MikroTikPatch/toyecc/Polynomial.py

332 lines
8.7 KiB
Python
Raw Normal View History

2024-06-15 02:18:14 +03:00
#
# toyecc - A small Elliptic Curve Cryptography Demonstration.
# Copyright (C) 2011-2022 Johannes Bauer
#
# This file is part of toyecc.
#
# toyecc is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; this program is ONLY licensed under
# version 3 of the License, later versions are explicitly excluded.
#
# toyecc is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with toyecc; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Johannes Bauer <JohannesBauer@gmx.de>
#
import re
import collections
from .FieldElement import FieldElement
class _CoeffDict(object):
def __init__(self):
self._coeffs = { }
def clone(self):
clone = _CoeffDict()
clone._coeffs = dict(self._coeffs)
return clone
@property
def degree(self):
if len(self._coeffs) > 0:
return max(self._coeffs.keys())
else:
return 0
def clone(self):
clone = _CoeffDict()
clone._coeffs = dict(self._coeffs)
return clone
def __eq__(self, other):
return self._coeffs == other._coeffs
def __neq__(self, other):
return not (self == other)
def __iter__(self):
return iter(self._coeffs.items())
def __len__(self):
return len(self._coeffs)
def __getitem__(self, key):
return self._coeffs.get(key, 0)
def __setitem__(self, key, value):
if (value == 0) and (key in self._coeffs):
del self._coeffs[key]
else:
self._coeffs[key] = value
def __str__(self):
return "CoeffDict<%s>" % (str(self._coeffs))
class Polynomial(object):
_TERM_RE = re.compile("^((?P<coeff>-?\d+)\*)?x(\^(?P<exponent>\d+))?$")
_CACHE_EXPONENTS = [ 2, 3 ]
def __init__(self, modulus, initvalue = None):
self._modulus = modulus
self._terms = _CoeffDict()
if initvalue is None:
self._terms[1] = FieldElement(1, self._modulus)
else:
if initvalue != 0:
self._terms[0] = FieldElement(initvalue, self._modulus)
self._expcache = { }
@property
def degree(self):
return self._terms.degree
@property
def modulus(self):
return self._modulus
@property
def is_constant(self):
return self.degree == 0
def get_constant(self):
assert(self.is_constant)
return self[0]
def _clone(self):
clone = Polynomial(self.modulus, 0)
clone._terms = self._terms.clone()
return clone
def substitute(self, value):
result = 0
for (exponent, coefficient) in self._terms:
result += coefficient * (value ** exponent)
return result
def gcd(self, other):
"""Returns the greatest common divisor polynomial of this object and
the other polynomial."""
assert(isinstance(other, Polynomial))
assert(self.modulus == other.modulus)
assert((self != 0) or (other != 0))
(a, b) = (self, other)
if a == 0:
return b
elif b == 0:
return a
while b != 0:
(a, b) = (b, a % b)
highest_coefficient = a._terms[a.degree]
a = a // highest_coefficient
return a
def __and__(self, other):
"""Returns the greatest common divisor polynomial of this object and
the other polynomial."""
return self.gcd(other)
def __add__(self, value):
if isinstance(value, int) or isinstance(value, FieldElement):
result = self._clone()
result._terms[0] += value
return result
elif isinstance(value, Polynomial):
result = self._clone()
for (exponent, coefficient) in value:
result._terms[exponent] += coefficient
return result
else:
raise Exception(NotImplemented)
def __sub__(self, value):
if isinstance(value, int) or isinstance(value, FieldElement):
result = self._clone()
result._terms[0] -= value
return result
elif isinstance(value, Polynomial):
result = self._clone()
for (exponent, coefficient) in value:
result._terms[exponent] -= coefficient
return result
else:
raise Exception(NotImplemented)
def __pow__(self, value):
if value in self._expcache:
return self._expcache[value]
if isinstance(value, int):
if len(self._terms) == 1:
result = Polynomial(self.modulus, 0)
for (exponent, coefficient) in self:
result._terms[exponent * value] = coefficient ** value
else:
exponent = value
result = Polynomial(self.modulus, 1)
multiplier = self
for bit in range(exponent.bit_length()):
if exponent & (1 << bit):
result = result * multiplier
multiplier = multiplier * multiplier
else:
raise Exception(NotImplemented)
if value in self._CACHE_EXPONENTS:
self._expcache[value] = result
return result
def powmod(self, exponent, modulus):
"""Returns the result of (self^exponent) % modulus. Exponent must be an
integer and modulus another Polynomial."""
assert(isinstance(exponent, int))
assert((modulus is None) or isinstance(modulus, Polynomial))
assert(exponent >= 0)
result = Polynomial(self.modulus, 1)
multiplier = self
for bit in range(exponent.bit_length()):
if exponent & (1 << bit):
result = (result * multiplier) % modulus
multiplier = (multiplier * multiplier) % modulus
return result
@classmethod
def parse_poly(cls, polystr, modulus):
poly = Polynomial(modulus, 0)
polystr = polystr.replace(" - ", " + -")
terms = polystr.split(" + ")
for term in terms:
if term.isnumeric():
poly._terms[0] += int(term)
else:
result = cls._TERM_RE.match(term)
if result is None:
raise Exception("Cannot parse polynomial term: '%s'" % (term))
result = result.groupdict()
result = { key: int(value) for (key, value) in result.items() if (value is not None) }
coeff = result.get("coeff", 1)
exponent = result.get("exponent", 1)
poly._terms[exponent] += FieldElement(coeff, modulus)
return poly
def __floordiv__(self, value):
if isinstance(value, int) or isinstance(value, FieldElement):
result = Polynomial(self.modulus, 0)
for (exponent, coefficient) in self:
result._terms[exponent] = coefficient // value
return result
elif isinstance(value, Polynomial):
if value.degree == 0:
return self // value[0]
result = Polynomial(self.modulus, 0)
numerator = self._clone()
while numerator.degree >= value.degree:
shift = numerator.degree - value.degree
multiplier = numerator[numerator.degree] // value[value.degree]
result._terms[shift] += multiplier
for (exponent, coefficient) in value:
numerator._terms[exponent + shift] -= multiplier * coefficient
return result
else:
raise Exception(NotImplemented)
def __mul__(self, value):
if isinstance(value, int) or isinstance(value, FieldElement):
result = Polynomial(self.modulus, 0)
for (exponent, coefficient) in self:
result._terms[exponent] = coefficient * value
return result
elif isinstance(value, Polynomial):
result = Polynomial(self.modulus, 0)
for (exponent1, coefficient1) in self:
for (exponent2, coefficient2) in value:
result._terms[exponent1 + exponent2] += coefficient1 * coefficient2
return result
else:
raise Exception(NotImplemented)
def __mod__(self, value):
if isinstance(value, Polynomial):
if value.degree == 0:
return Polynomial(self.modulus, 0)
result = self._clone()
while result.degree >= value.degree:
shift = result.degree - value.degree
multiplier = result[result.degree] // value[value.degree]
for (exponent, coefficient) in value:
result._terms[exponent + shift] -= multiplier * coefficient
return result
else:
raise Exception(NotImplemented)
def __rmul__(self, value):
return self * value
def __radd__(self, value):
return self + value
def __getitem__(self, exponent):
return self._terms[exponent]
def __iter__(self):
yield from iter(self._terms)
def __eq__(self, value):
if isinstance(value, int) or isinstance(value, FieldElement):
return self.is_constant and (self.get_constant() == value)
elif isinstance(value, Polynomial):
return (self.modulus == value.modulus) and (self._terms == value._terms)
else:
raise Exception(NotImplemented)
def __ne__(self, value):
return not (self == value)
def __repr__(self):
return str(self)
def __str__(self):
terms = [ ]
for (exponent, coefficient) in sorted(self, reverse = True):
if coefficient == 0:
continue
if exponent == 0:
terms.append("%d" % (int(coefficient)))
continue
elif coefficient == 1:
coeffstr = ""
else:
coeffstr = "%d*" % (int(coefficient))
if exponent == 1:
termstr = "x"
else:
termstr = "x^%d" % (int(exponent))
terms.append(coeffstr + termstr)
if len(terms) == 0:
return "0"
else:
return " + ".join(terms)