MikroTikPatch/toyecc/MontgomeryCurve.py

165 lines
5.8 KiB
Python
Raw Normal View History

2024-06-15 02:18:14 +03:00
#
# toyecc - A small Elliptic Curve Cryptography Demonstration.
# Copyright (C) 2011-2022 Johannes Bauer
#
# This file is part of toyecc.
#
# toyecc is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; this program is ONLY licensed under
# version 3 of the License, later versions are explicitly excluded.
#
# toyecc is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with toyecc; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Johannes Bauer <JohannesBauer@gmx.de>
#
import collections
from .FieldElement import FieldElement
from .AffineCurvePoint import AffineCurvePoint
from .EllipticCurve import EllipticCurve
from .DocInherit import doc_inherit
import toyecc.TwistedEdwardsCurve
_MontgomeryCurveDomainParameters = collections.namedtuple("MontgomeryCurveDomainParameters", [ "curvetype", "a", "b", "p", "n", "G" ])
class MontgomeryCurve(EllipticCurve):
"""Represents an elliptic curve over a finite field F_P that satisfies the
Montgomery equation by^2 = x^3 + ax^2 + x."""
pretty_name = "Montgomery"
def __init__(self, a, b, p, n, h, Gx, Gy, **kwargs):
"""Create an elliptic Montgomery curve given the equation coefficients
a and b, the curve modulus p, the order of the curve n, the cofactor of
the curve h and the generator point G's X and Y coordinates in affine
representation, Gx and Gy."""
EllipticCurve.__init__(self, p, n, h, Gx, Gy, **kwargs)
assert(isinstance(a, int)) # Curve coefficent A
assert(isinstance(b, int)) # Curve coefficent B
self._a = FieldElement(a, p)
self._b = FieldElement(b, p)
self._name = kwargs.get("name")
# Check that the curve is not singular
assert(self.b * ((self.a ** 2) - 4) != 0)
if self._G is not None:
# Check that the generator G is on the curve
assert(self._G.oncurve())
# Check that the generator G is of curve order
assert((self.n * self.G).is_neutral)
@property
@doc_inherit(EllipticCurve)
def domainparams(self):
return _MontgomeryCurveDomainParameters(curvetype = self.curvetype, a = self.a, b = self.b, p = self.p, n = self.n, G = self.G)
@property
@doc_inherit(EllipticCurve)
def curvetype(self):
return "montgomery"
@property
def a(self):
"""Returns the coefficient a of the curve equation by^2 = x^3 + ax^2 + x."""
return self._a
@property
def b(self):
"""Returns the coefficient b of the curve equation by^2 = x^3 + ax^2 + x."""
return self._b
@doc_inherit(EllipticCurve)
def oncurve(self, P):
return (P.is_neutral) or ((self.b * P.y ** 2) == (P.x ** 3) + (self.a * (P.x ** 2)) + P.x)
@doc_inherit(EllipticCurve)
def point_conjugate(self, P):
return AffineCurvePoint(int(P.x), int(-P.y), self)
@doc_inherit(EllipticCurve)
def point_addition(self, P, Q):
if P.is_neutral:
# P is at infinity, O + Q = Q
result = Q
elif P == -Q:
# P == -Q, return O (point at infinity)
result = AffineCurvePoint.neutral(self)
elif P == Q:
# P == Q, point doubling
newx = -2 * P.x - self.a + (3 * P.x**2 + 2 * P.x * self.a + 1)**2 // (4 * P.y**2 * self.b)
newy = -P.y + (3 * P.x**2 + 2 * P.x * self.a + 1) * (3 * P.x + self.a) // (2 * P.y * self.b) - (3 * P.x**2 + 2 * P.x * self.a + 1)**3 // (8 * P.y**3 * self.b**2)
result = AffineCurvePoint(int(newx), int(newy), self)
else:
# P != Q, point addition
newx = -P.x - Q.x - self.a + (P.y - Q.y)**2 * self.b // (P.x - Q.x)**2
newy = (2 * P.x + Q.x + self.a) * (P.y - Q.y) // (P.x - Q.x) - P.y - (P.y - Q.y)**3 * self.b // (P.x - Q.x)**3
result = AffineCurvePoint(int(newx), int(newy), self)
return result
def to_twistededwards(self, a = None):
"""Converts the domain parameters of this curve to domain parameters of
a birationally equivalent twisted Edwards curve. The user may select a
desired a coefficient that the resulting Edwards curve shall have or
leave it at None to accept an arbitrary one."""
assert((a is None) or isinstance(a, int))
# For the Montgomery curve, B can always be arbitrarily chosen as long
# as the surrogate B coeffients are identical in their quadratic
# residue property mod p. This means an Montgomery curve where B is a
# quadratic residue mod p is isomorphous to all other Montgomery curves
# with identical A, p and where B is also a quadratic residue mod p. We
# use this property to get the curve we want if there is a desired "a"
# outcome and choose B appropriately.
if a is None:
# No special wish for a, just do the normal conversion
conversion_b = self.b
a = (self.a + 2) // conversion_b
else:
# We desire a special a and calculate the B we want
conversion_b = (self.a + 2) // a
# And assure that it's QR property is the same as the original
assert(conversion_b.is_qr == self.b.is_qr)
d = (self.a - 2) // conversion_b
# Then construct a curve with no generator first
raw_curve = toyecc.TwistedEdwardsCurve.TwistedEdwardsCurve(
a = int(a),
d = int(d),
p = self.p,
n = self.n,
h = self.h,
Gx = None,
Gy = None,
)
# Convert the generator point to the new curve
G_twed = self.G.convert(raw_curve)
# And recreate the curve with this new generator
twed_curve = toyecc.TwistedEdwardsCurve.TwistedEdwardsCurve(
a = int(a),
d = int(d),
p = self.p,
n = self.n,
h = self.h,
Gx = int(G_twed.x),
Gy = int(G_twed.y),
)
return twed_curve
def __str__(self):
if self.hasname:
return "MontgomeryCurve<%s>" % (self.name)
else:
return "MontgomeryCurve<0x%x y^2 = x^3 + 0x%x x^2 + x mod 0x%x>" % (int(self.b), int(self.a), int(self.p))