mirror of
https://github.com/elseif/MikroTikPatch.git
synced 2025-01-23 21:44:59 +03:00
229 lines
8.4 KiB
Python
229 lines
8.4 KiB
Python
#
|
|
# toyecc - A small Elliptic Curve Cryptography Demonstration.
|
|
# Copyright (C) 2011-2022 Johannes Bauer
|
|
#
|
|
# This file is part of toyecc.
|
|
#
|
|
# toyecc is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; this program is ONLY licensed under
|
|
# version 3 of the License, later versions are explicitly excluded.
|
|
#
|
|
# toyecc is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with toyecc; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# Johannes Bauer <JohannesBauer@gmx.de>
|
|
#
|
|
|
|
import hashlib
|
|
import collections
|
|
|
|
from .FieldElement import FieldElement
|
|
from .Random import secure_rand, secure_rand_int_between
|
|
from .AffineCurvePoint import AffineCurvePoint
|
|
from .CurveDB import CurveDB
|
|
from .ShortWeierstrassCurve import ShortWeierstrassCurve
|
|
from .ASN1 import parse_asn1_private_key, parse_asn1_field_params_fp
|
|
from . import Tools
|
|
from .CurveQuirks import CurveQuirkEdDSASetPrivateKeyMSB, CurveQuirkEdDSAEnsurePrimeOrderSubgroup, CurveQuirkSigningHashFunction
|
|
|
|
class PrivKeyOpECDSASign(object):
|
|
ECDSASignature = collections.namedtuple("ECDSASignature", [ "hashalg", "r", "s" ])
|
|
|
|
def ecdsa_sign_hash(self, message_digest, k = None, digestname = None):
|
|
"""Signs a given messagedigest, given as bytes, using ECDSA.
|
|
Optionally a nonce k can be supplied which should usually be unqiuely
|
|
chosen for every ECDSA signature. This way it is possible to
|
|
deliberately create broken signatures which can be exploited later on.
|
|
If k is not supplied, it is randomly chosen. If a digestname is
|
|
supplied the name of this digest eventually ends up in the
|
|
ECDSASignature object."""
|
|
assert(isinstance(message_digest, bytes))
|
|
assert((k is None) or isinstance(k, int))
|
|
|
|
# Convert message digest to integer value
|
|
e = Tools.ecdsa_msgdigest_to_int(message_digest, self.curve.n)
|
|
|
|
# Select a random integer (if None is supplied!)
|
|
if k is None:
|
|
k = secure_rand_int_between(1, self.curve.n - 1)
|
|
|
|
# r = (k * G)_x mod n
|
|
Rmodp = k * self.curve.G
|
|
r = int(Rmodp.x) % self.curve.n
|
|
assert(r != 0)
|
|
|
|
s = FieldElement(e + self.scalar * r, self.curve.n) // k
|
|
|
|
return self.ECDSASignature(r = r, s = int(s), hashalg = digestname)
|
|
|
|
def ecdsa_sign(self, message, digestname, k = None):
|
|
"""Signs a given message with the digest that is given as a string.
|
|
Optionally a nonce k can be supplied which should usually be unqiuely
|
|
chosen for every ECDSA signature. This way it is possible to
|
|
deliberately create broken signatures which can be exploited later
|
|
on. If k is not supplied, it is randomly chosen."""
|
|
assert(isinstance(message, bytes))
|
|
assert(isinstance(digestname, str))
|
|
digest_fnc = hashlib.new(digestname)
|
|
digest_fnc.update(message)
|
|
message_digest = digest_fnc.digest()
|
|
return self.ecdsa_sign_hash(message_digest, k = k, digestname = digestname)
|
|
|
|
|
|
class PrivKeyOpECIESDecrypt(object):
|
|
def ecies_decrypt(self, R):
|
|
"""Takes the transmitted point R and reconstructs the shared secret
|
|
point S using the private key."""
|
|
# Transmitted R is given, restore the symmetric key S
|
|
return self._scalar * R
|
|
|
|
|
|
class PrivKeyOpEDDSASign(object):
|
|
class EDDSASignature(object):
|
|
def __init__(self, curve, R, s):
|
|
self._curve = curve
|
|
self._R = R
|
|
self._s = s
|
|
|
|
@property
|
|
def curve(self):
|
|
return self._curve
|
|
|
|
@property
|
|
def R(self):
|
|
return self._R
|
|
|
|
@property
|
|
def s(self):
|
|
return self._s
|
|
|
|
def encode(self):
|
|
"""Performs serialization of the signature as used by EdDSA."""
|
|
return self.R.eddsa_encode() + Tools.inttobytes_le(self.s, (self.curve.B + 7) // 8)
|
|
|
|
@classmethod
|
|
def decode(cls, curve, encoded_signature):
|
|
"""Performs deserialization of the signature as used by EdDSA."""
|
|
assert(isinstance(encoded_signature, bytes))
|
|
coordlen = (curve.B + 7) // 8
|
|
assert(len(encoded_signature) == 2 * coordlen)
|
|
encoded_R = encoded_signature[:coordlen]
|
|
encoded_s = encoded_signature[coordlen:]
|
|
R = AffineCurvePoint.eddsa_decode(curve, encoded_R)
|
|
s = Tools.bytestoint_le(encoded_s)
|
|
return cls(curve, R, s)
|
|
|
|
def __eq__(self, other):
|
|
return (self.R, self.s) == (other.R, other.s)
|
|
|
|
def __str__(self):
|
|
return "EDDSASignature<R = %s, s = %s>" % (self.R, self.s)
|
|
|
|
def eddsa_sign(self, message):
|
|
"""Performs an EdDSA signature of the message. For this to work the
|
|
curve has to be a twisted Edwards curve and the private key scalar has
|
|
to be generated from a hashed seed. This hashed seed is automatically
|
|
generated when a keypair is generated using, for example, the
|
|
eddsa_generate() function instead of the regular key generation
|
|
function generate()."""
|
|
assert(self.curve.curvetype == "twistededwards")
|
|
if self._seed is None:
|
|
raise Exception("EdDSA requires a seed which is the source for calculation of the private key scalar.")
|
|
if not self.curve.has_quirk(CurveQuirkSigningHashFunction):
|
|
raise Exception("Unable to determine EdDSA signature function.")
|
|
|
|
quirk = self.curve.get_quirk(CurveQuirkSigningHashFunction)
|
|
h = quirk.hashdata(self._seed)
|
|
|
|
coordlen = (self.curve.B + 7) // 8
|
|
r = Tools.bytestoint_le(quirk.hashdata(h[coordlen : 2 * coordlen] + message))
|
|
R = r * self.curve.G
|
|
s = (r + Tools.bytestoint_le(quirk.hashdata(R.eddsa_encode() + self.pubkey.point.eddsa_encode() + message)) * self.scalar) % self.curve.n
|
|
sig = self.EDDSASignature(self.curve, R, s)
|
|
return sig
|
|
|
|
|
|
class PrivKeyOpEDDSAKeyGen(object):
|
|
@classmethod
|
|
def eddsa_generate(cls, curve, seed = None):
|
|
"""Generates a randomly selected seed value. This seed value is then
|
|
hashed using the EdDSA hash function (SHA512 for Ed2556 and
|
|
Shake256-114 for Ed448) and the resulting value is (slightly modified)
|
|
used as the private key scalar. Since for EdDSA signing operations
|
|
this seed value is needed, it is also stored within the private key."""
|
|
coordlen = (curve.B + 7) // 8
|
|
if seed is None:
|
|
seed = secure_rand(coordlen)
|
|
assert(isinstance(seed, bytes))
|
|
assert(len(seed) == coordlen)
|
|
|
|
# Calculate hash over seed and generate scalar from hash over seed
|
|
if not curve.has_quirk(CurveQuirkSigningHashFunction):
|
|
raise Exception("Unable to determine EdDSA signature function.")
|
|
quirk = curve.get_quirk(CurveQuirkSigningHashFunction)
|
|
h = quirk.hashdata(seed)
|
|
a = int.from_bytes(h[:coordlen], byteorder = "little") & ((1 << (curve.B - 1)) - 1)
|
|
|
|
# Do we need to mask out lower significant bits to ensure that we use a
|
|
# prime order subgroup?
|
|
if curve.has_quirk(CurveQuirkEdDSAEnsurePrimeOrderSubgroup):
|
|
if not Tools.is_power_of_two(curve.h):
|
|
raise Exception("Can only ensure prime order subgroup by masking 'a' when curve cofactor is a power of two, h = %d isn't." % (curve.h))
|
|
a &= ~(curve.h - 1)
|
|
|
|
# Is the MSB of the curve always set to ensure constant runtime of the
|
|
# Montgomery ladder?
|
|
if curve.has_quirk(CurveQuirkEdDSASetPrivateKeyMSB):
|
|
bit = curve.n.bit_length() + 1
|
|
a |= (1 << bit)
|
|
privkey = cls(a, curve)
|
|
privkey.set_seed(seed)
|
|
return privkey
|
|
|
|
|
|
class PrivKeyOpEDDSAEncode(object):
|
|
def eddsa_encode(self):
|
|
"""Performs serialization of a private key that is used for EdDSA."""
|
|
return self.seed
|
|
|
|
@classmethod
|
|
def eddsa_decode(cls, curve, encoded_privkey):
|
|
"""Performs decoding of a serialized private key as it is used for EdDSA."""
|
|
return cls.eddsa_generate(curve, encoded_privkey)
|
|
|
|
|
|
class PrivKeyOpECDH(object):
|
|
def ecdh_compute(self, peer_pubkey):
|
|
"""Compute the shared secret point using our own private key and the
|
|
public key of our peer."""
|
|
return self.scalar * peer_pubkey.point
|
|
|
|
|
|
class PrivKeyOpLoad(object):
|
|
@classmethod
|
|
def load_derdata(cls, derdata):
|
|
"""Loads an EC private key from a DER-encoded ASN.1 bytes object."""
|
|
asn1 = parse_asn1_private_key(derdata)
|
|
private_key_scalar = Tools.bytestoint(asn1["privateKey"])
|
|
curve = CurveDB().get_curve_from_asn1(asn1["parameters"])
|
|
return cls(private_key_scalar, curve)
|
|
|
|
@classmethod
|
|
def load_pem(cls, pemfilename):
|
|
"""Loads an EC private key from a PEM-encoded 'EC PRIVATE KEY' file."""
|
|
return cls.load_derdata(Tools.load_pem_data(pemfilename, "EC PRIVATE KEY"))
|
|
|
|
@classmethod
|
|
def load_der(cls, derfilename):
|
|
"""Loads an EC private key from a DER-encoded ASN.1 file."""
|
|
with open(derfilename, "rb") as f:
|
|
data = f.read()
|
|
return cls.load_derdata(data)
|