#include "global.h" Mtx gIdentityMtx = { { { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 }, }, { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, }, } }; Matrix gIdentityMatrix = { { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f }, } }; Matrix* gGfxMatrix; Matrix sGfxMatrixStack[0x20]; Matrix* gCalcMatrix; Matrix sCalcMatrixStack[0x20]; // Copies src Matrix into dst void Matrix_Copy(Matrix* dst, Matrix* src) { s32 i; for (i = 0; i < 4; i++) { dst->m[i][0] = src->m[i][0]; dst->m[i][1] = src->m[i][1]; dst->m[i][2] = src->m[i][2]; dst->m[i][3] = src->m[i][3]; } } // Makes a copy of the stack's current matrix and puts it on the top of the stack void Matrix_Push(Matrix** mtxStack) { Matrix_Copy(*mtxStack + 1, *mtxStack); *mtxStack += 1; } // Removes the top matrix of the stack void Matrix_Pop(Matrix** mtxStack) { *mtxStack -= 1; } // Copies tf into mtx (MTXMODE_NEW) or applies it to mtx (MTXMODE_APPLY) void Matrix_Mult(Matrix* mtx, Matrix* tf, u8 mode) { f32 rx; f32 ry; f32 rz; f32 rw; s32 i0; s32 i1; s32 i2; s32 i3; if (mode == 1) { rx = mtx->m[0][0]; ry = mtx->m[1][0]; rz = mtx->m[2][0]; rw = mtx->m[3][0]; for (i0 = 0; i0 < 4; i0++) { mtx->m[i0][0] = (rx * tf->m[i0][0]) + (ry * tf->m[i0][1]) + (rz * tf->m[i0][2]) + (rw * tf->m[i0][3]); } rx = mtx->m[0][1]; ry = mtx->m[1][1]; rz = mtx->m[2][1]; rw = mtx->m[3][1]; for (i1 = 0; i1 < 4; i1++) { mtx->m[i1][1] = (rx * tf->m[i1][0]) + (ry * tf->m[i1][1]) + (rz * tf->m[i1][2]) + (rw * tf->m[i1][3]); } rx = mtx->m[0][2]; ry = mtx->m[1][2]; rz = mtx->m[2][2]; rw = mtx->m[3][2]; for (i2 = 0; i2 < 4; i2++) { mtx->m[i2][2] = (rx * tf->m[i2][0]) + (ry * tf->m[i2][1]) + (rz * tf->m[i2][2]) + (rw * tf->m[i2][3]); } rx = mtx->m[0][3]; ry = mtx->m[1][3]; rz = mtx->m[2][3]; rw = mtx->m[3][3]; for (i3 = 0; i3 < 4; i3++) { mtx->m[i3][3] = (rx * tf->m[i3][0]) + (ry * tf->m[i3][1]) + (rz * tf->m[i3][2]) + (rw * tf->m[i3][3]); } } else { Matrix_Copy(mtx, tf); } } // Creates a translation matrix in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY) void Matrix_Translate(Matrix* mtx, f32 x, f32 y, f32 z, u8 mode) { f32 rx; f32 ry; s32 i; if (mode == 1) { for (i = 0; i < 4; i++) { rx = mtx->m[0][i]; ry = mtx->m[1][i]; mtx->m[3][i] += (rx * x) + (ry * y) + (mtx->m[2][i] * z); } } else { mtx->m[3][0] = x; mtx->m[3][1] = y; mtx->m[3][2] = z; mtx->m[0][1] = mtx->m[0][2] = mtx->m[0][3] = mtx->m[1][0] = mtx->m[1][2] = mtx->m[1][3] = mtx->m[2][0] = mtx->m[2][1] = mtx->m[2][3] = 0.0f; mtx->m[0][0] = mtx->m[1][1] = mtx->m[2][2] = mtx->m[3][3] = 1.0f; } } // Creates a scale matrix in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY) void Matrix_Scale(Matrix* mtx, f32 xScale, f32 yScale, f32 zScale, u8 mode) { f32 rx; f32 ry; s32 i; if (mode == 1) { for (i = 0; i < 4; i++) { rx = mtx->m[0][i]; ry = mtx->m[1][i]; mtx->m[0][i] = rx * xScale; mtx->m[1][i] = ry * yScale; mtx->m[2][i] *= zScale; } } else { mtx->m[0][0] = xScale; mtx->m[1][1] = yScale; mtx->m[2][2] = zScale; mtx->m[0][1] = mtx->m[0][2] = mtx->m[0][3] = mtx->m[1][0] = mtx->m[1][2] = mtx->m[1][3] = mtx->m[2][0] = mtx->m[2][1] = mtx->m[2][3] = mtx->m[3][0] = mtx->m[3][1] = mtx->m[3][2] = 0.0f; mtx->m[3][3] = 1.0f; } } // Creates rotation matrix about the X axis in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY) void Matrix_RotateX(Matrix* mtx, f32 angle, u8 mode) { f32 cs; f32 sn; f32 ry; f32 rz; s32 i; sn = __sinf(angle); cs = __cosf(angle); if (mode == 1) { for (i = 0; i < 4; i++) { ry = mtx->m[1][i]; rz = mtx->m[2][i]; mtx->m[1][i] = (ry * cs) + (rz * sn); mtx->m[2][i] = (rz * cs) - (ry * sn); } } else { mtx->m[1][1] = mtx->m[2][2] = cs; mtx->m[1][2] = sn; mtx->m[2][1] = -sn; mtx->m[0][0] = mtx->m[3][3] = 1.0f; mtx->m[0][1] = mtx->m[0][2] = mtx->m[0][3] = mtx->m[1][0] = mtx->m[1][3] = mtx->m[2][0] = mtx->m[2][3] = mtx->m[3][0] = mtx->m[3][1] = mtx->m[3][2] = 0.0f; } } // Creates rotation matrix about the Y axis in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY) void Matrix_RotateY(Matrix* mtx, f32 angle, u8 mode) { f32 cs; f32 sn; f32 rx; f32 rz; s32 i; sn = __sinf(angle); cs = __cosf(angle); if (mode == 1) { for (i = 0; i < 4; i++) { rx = mtx->m[0][i]; rz = mtx->m[2][i]; mtx->m[0][i] = (rx * cs) - (rz * sn); mtx->m[2][i] = (rx * sn) + (rz * cs); } } else { mtx->m[0][0] = mtx->m[2][2] = cs; mtx->m[0][2] = -sn; mtx->m[2][0] = sn; mtx->m[1][1] = mtx->m[3][3] = 1.0f; mtx->m[0][1] = mtx->m[0][3] = mtx->m[1][0] = mtx->m[1][2] = mtx->m[1][3] = mtx->m[2][1] = mtx->m[2][3] = mtx->m[3][0] = mtx->m[3][1] = mtx->m[3][2] = 0.0f; } } // Creates rotation matrix about the Z axis in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY) void Matrix_RotateZ(Matrix* mtx, f32 angle, u8 mode) { f32 cs; f32 sn; f32 rx; f32 ry; s32 i; sn = __sinf(angle); cs = __cosf(angle); if (mode == 1) { for (i = 0; i < 4; i++) { rx = mtx->m[0][i]; ry = mtx->m[1][i]; mtx->m[0][i] = (rx * cs) + (ry * sn); mtx->m[1][i] = (ry * cs) - (rx * sn); } } else { mtx->m[0][0] = mtx->m[1][1] = cs; mtx->m[0][1] = sn; mtx->m[1][0] = -sn; mtx->m[2][2] = mtx->m[3][3] = 1.0f; mtx->m[0][2] = mtx->m[0][3] = mtx->m[1][2] = mtx->m[1][3] = mtx->m[2][0] = mtx->m[2][1] = mtx->m[2][3] = mtx->m[3][0] = mtx->m[3][1] = mtx->m[3][2] = 0.0f; } } // Creates rotation matrix about a given vector axis in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY). // The vector specifying the axis does not need to be a unit vector. void Matrix_RotateAxis(Matrix* mtx, f32 angle, f32 axisX, f32 axisY, f32 axisZ, u8 mode) { f32 rx; f32 ry; f32 rz; f32 norm; f32 cxx; f32 cyx; f32 czx; f32 cxy; f32 cyy; f32 czy; f32 cxz; f32 cyz; f32 czz; f32 xx; f32 yy; f32 zz; f32 xy; f32 yz; f32 xz; f32 sinA; f32 cosA; norm = sqrtf((axisX * axisX) + (axisY * axisY) + (axisZ * axisZ)); if (norm != 0.0) { axisX /= norm; axisY /= norm; axisZ /= norm; sinA = __sinf(angle); cosA = __cosf(angle); xx = axisX * axisX; yy = axisY * axisY; zz = axisZ * axisZ; xy = axisX * axisY; yz = axisY * axisZ; xz = axisX * axisZ; if (mode == 1) { cxx = (1.0f - xx) * cosA + xx; cyx = (1.0f - cosA) * xy + axisZ * sinA; czx = (1.0f - cosA) * xz - axisY * sinA; cxy = (1.0f - cosA) * xy - axisZ * sinA; cyy = (1.0f - yy) * cosA + yy; czy = (1.0f - cosA) * yz + axisX * sinA; cxz = (1.0f - cosA) * xz + axisY * sinA; cyz = (1.0f - cosA) * yz - axisX * sinA; czz = (1.0f - zz) * cosA + zz; // loop doesn't seem to work here. rx = mtx->m[0][0]; ry = mtx->m[0][1]; rz = mtx->m[0][2]; mtx->m[0][0] = (rx * cxx) + (ry * cxy) + (rz * cxz); mtx->m[0][1] = (rx * cyx) + (ry * cyy) + (rz * cyz); mtx->m[0][2] = (rx * czx) + (ry * czy) + (rz * czz); rx = mtx->m[1][0]; ry = mtx->m[1][1]; rz = mtx->m[1][2]; mtx->m[1][0] = (rx * cxx) + (ry * cxy) + (rz * cxz); mtx->m[1][1] = (rx * cyx) + (ry * cyy) + (rz * cyz); mtx->m[1][2] = (rx * czx) + (ry * czy) + (rz * czz); rx = mtx->m[2][0]; ry = mtx->m[2][1]; rz = mtx->m[2][2]; mtx->m[2][0] = (rx * cxx) + (ry * cxy) + (rz * cxz); mtx->m[2][1] = (rx * cyx) + (ry * cyy) + (rz * cyz); mtx->m[2][2] = (rx * czx) + (ry * czy) + (rz * czz); } else { mtx->m[0][0] = (1.0f - xx) * cosA + xx; mtx->m[0][1] = (1.0f - cosA) * xy + axisZ * sinA; mtx->m[0][2] = (1.0f - cosA) * xz - axisY * sinA; mtx->m[0][3] = 0.0f; mtx->m[1][0] = (1.0f - cosA) * xy - axisZ * sinA; mtx->m[1][1] = (1.0f - yy) * cosA + yy; mtx->m[1][2] = (1.0f - cosA) * yz + axisX * sinA; mtx->m[1][3] = 0.0f; mtx->m[2][0] = (1.0f - cosA) * xz + axisY * sinA; mtx->m[2][1] = (1.0f - cosA) * yz - axisX * sinA; mtx->m[2][2] = (1.0f - zz) * cosA + zz; mtx->m[2][3] = 0.0f; mtx->m[3][0] = mtx->m[3][1] = mtx->m[3][2] = 0.0f; mtx->m[3][3] = 1.0f; } } } // Converts the current Gfx matrix to a Mtx void Matrix_ToMtx(Mtx* dest) { s32 intVal; u16(*iPart)[4] = dest->u.i; u16(*fPart)[4] = dest->u.f; Matrix* src = gGfxMatrix; intVal = src->m[0][0] * 0x10000; iPart[0][0] = intVal >> 0x10; fPart[0][0] = intVal % 0x10000U; intVal = src->m[0][1] * 0x10000; iPart[0][1] = intVal >> 0x10; fPart[0][1] = intVal % 0x10000U; intVal = src->m[0][2] * 0x10000; iPart[0][2] = intVal >> 0x10; fPart[0][2] = intVal % 0x10000U; intVal = src->m[0][3] * 0x10000; iPart[0][3] = intVal >> 0x10; fPart[0][3] = intVal % 0x10000U; intVal = src->m[1][0] * 0x10000; iPart[1][0] = intVal >> 0x10; fPart[1][0] = intVal % 0x10000U; intVal = src->m[1][1] * 0x10000; iPart[1][1] = intVal >> 0x10; fPart[1][1] = intVal % 0x10000U; intVal = src->m[1][2] * 0x10000; iPart[1][2] = intVal >> 0x10; fPart[1][2] = intVal % 0x10000U; intVal = src->m[1][3] * 0x10000; iPart[1][3] = intVal >> 0x10; fPart[1][3] = intVal % 0x10000U; intVal = src->m[2][0] * 0x10000; iPart[2][0] = intVal >> 0x10; fPart[2][0] = intVal % 0x10000U; intVal = src->m[2][1] * 0x10000; iPart[2][1] = intVal >> 0x10; fPart[2][1] = intVal % 0x10000U; intVal = src->m[2][2] * 0x10000; iPart[2][2] = intVal >> 0x10; fPart[2][2] = intVal % 0x10000U; intVal = src->m[2][3] * 0x10000; iPart[2][3] = intVal >> 0x10; fPart[2][3] = intVal % 0x10000U; intVal = src->m[3][0] * 0x10000; iPart[3][0] = intVal >> 0x10; fPart[3][0] = intVal % 0x10000U; intVal = src->m[3][1] * 0x10000; iPart[3][1] = intVal >> 0x10; fPart[3][1] = intVal % 0x10000U; intVal = src->m[3][2] * 0x10000; iPart[3][2] = intVal >> 0x10; fPart[3][2] = intVal % 0x10000U; intVal = src->m[3][3] * 0x10000; iPart[3][3] = intVal >> 0x10; fPart[3][3] = intVal % 0x10000U; } // Converts the Mtx src to a Matrix, putting the result in dest void Matrix_FromMtx(Mtx* src, Matrix* dest) { dest->m[0][0] = ((src->u.i[0][0] << 0x10) | src->u.f[0][0]) * (1.0f / 0x10000); dest->m[0][1] = ((src->u.i[0][1] << 0x10) | src->u.f[0][1]) * (1.0f / 0x10000); dest->m[0][2] = ((src->u.i[0][2] << 0x10) | src->u.f[0][2]) * (1.0f / 0x10000); dest->m[0][3] = ((src->u.i[0][3] << 0x10) | src->u.f[0][3]) * (1.0f / 0x10000); dest->m[1][0] = ((src->u.i[1][0] << 0x10) | src->u.f[1][0]) * (1.0f / 0x10000); dest->m[1][1] = ((src->u.i[1][1] << 0x10) | src->u.f[1][1]) * (1.0f / 0x10000); dest->m[1][2] = ((src->u.i[1][2] << 0x10) | src->u.f[1][2]) * (1.0f / 0x10000); dest->m[1][3] = ((src->u.i[1][3] << 0x10) | src->u.f[1][3]) * (1.0f / 0x10000); dest->m[2][0] = ((src->u.i[2][0] << 0x10) | src->u.f[2][0]) * (1.0f / 0x10000); dest->m[2][1] = ((src->u.i[2][1] << 0x10) | src->u.f[2][1]) * (1.0f / 0x10000); dest->m[2][2] = ((src->u.i[2][2] << 0x10) | src->u.f[2][2]) * (1.0f / 0x10000); dest->m[2][3] = ((src->u.i[2][3] << 0x10) | src->u.f[2][3]) * (1.0f / 0x10000); dest->m[3][0] = ((src->u.i[3][0] << 0x10) | src->u.f[3][0]) * (1.0f / 0x10000); dest->m[3][1] = ((src->u.i[3][1] << 0x10) | src->u.f[3][1]) * (1.0f / 0x10000); dest->m[3][2] = ((src->u.i[3][2] << 0x10) | src->u.f[3][2]) * (1.0f / 0x10000); dest->m[3][3] = ((src->u.i[3][3] << 0x10) | src->u.f[3][3]) * (1.0f / 0x10000); } // Applies the transform matrix mtx to the vector src, putting the result in dest void Matrix_MultVec3f(Matrix* mtx, Vec3f* src, Vec3f* dest) { dest->x = (mtx->m[0][0] * src->x) + (mtx->m[1][0] * src->y) + (mtx->m[2][0] * src->z) + mtx->m[3][0]; dest->y = (mtx->m[0][1] * src->x) + (mtx->m[1][1] * src->y) + (mtx->m[2][1] * src->z) + mtx->m[3][1]; dest->z = (mtx->m[0][2] * src->x) + (mtx->m[1][2] * src->y) + (mtx->m[2][2] * src->z) + mtx->m[3][2]; } // Applies the linear part of the transformation matrix mtx to the vector src, ignoring any translation that mtx might // have. Puts the result in dest. void Matrix_MultVec3fNoTranslate(Matrix* mtx, Vec3f* src, Vec3f* dest) { dest->x = (mtx->m[0][0] * src->x) + (mtx->m[1][0] * src->y) + (mtx->m[2][0] * src->z); dest->y = (mtx->m[0][1] * src->x) + (mtx->m[1][1] * src->y) + (mtx->m[2][1] * src->z); dest->z = (mtx->m[0][2] * src->x) + (mtx->m[1][2] * src->y) + (mtx->m[2][2] * src->z); } // Expresses the rotational part of the transform mtx as Tait-Bryan angles, in the yaw-pitch-roll (intrinsic YXZ) // convention used in worldspace calculations void Matrix_GetYRPAngles(Matrix* mtx, Vec3f* rot) { Matrix invYP; Vec3f origin = { 0.0f, 0.0f, 0.0f }; Vec3f originP; Vec3f zHat = { 0.0f, 0.0f, 1.0f }; Vec3f zHatP; Vec3f xHat = { 1.0f, 0.0f, 0.0f }; Vec3f xHatP; Matrix_MultVec3fNoTranslate(mtx, &origin, &originP); Matrix_MultVec3fNoTranslate(mtx, &zHat, &zHatP); Matrix_MultVec3fNoTranslate(mtx, &xHat, &xHatP); zHatP.x -= originP.x; zHatP.y -= originP.y; zHatP.z -= originP.z; xHatP.x -= originP.x; xHatP.y -= originP.y; xHatP.z -= originP.z; rot->y = Math_Atan2F(zHatP.x, zHatP.z); rot->x = -Math_Atan2F(zHatP.y, sqrtf(SQ(zHatP.x) + SQ(zHatP.z))); Matrix_RotateX(&invYP, -rot->x, 0); Matrix_RotateY(&invYP, -rot->y, 1); Matrix_MultVec3fNoTranslate(&invYP, &xHatP, &xHat); rot->x *= M_RTOD; rot->y *= M_RTOD; rot->z = Math_Atan2F(xHat.y, xHat.x) * M_RTOD; } // Expresses the rotational part of the transform mtx as Tait-Bryan angles, in the extrinsic XYZ convention used in // modelspace calculations void Matrix_GetXYZAngles(Matrix* mtx, Vec3f* rot) { Matrix invYZ; Vec3f origin = { 0.0f, 0.0f, 0.0f }; Vec3f originP; Vec3f xHat = { 1.0f, 0.0f, 0.0f }; Vec3f xHatP; Vec3f yHat = { 0.0f, 1.0f, 0.0f }; Vec3f yHatP; Matrix_MultVec3fNoTranslate(mtx, &origin, &originP); Matrix_MultVec3fNoTranslate(mtx, &xHat, &xHatP); Matrix_MultVec3fNoTranslate(mtx, &yHat, &yHatP); xHatP.x -= originP.x; xHatP.y -= originP.y; xHatP.z -= originP.z; yHatP.x -= originP.x; yHatP.y -= originP.y; yHatP.z -= originP.z; rot->z = Math_Atan2F(xHatP.y, xHatP.x); rot->y = -Math_Atan2F(xHatP.z, sqrtf(SQ(xHatP.x) + SQ(xHatP.y))); Matrix_RotateY(&invYZ, -rot->y, 0); Matrix_RotateZ(&invYZ, -rot->z, 1); Matrix_MultVec3fNoTranslate(&invYZ, &yHatP, &yHat); rot->x = Math_Atan2F(yHat.z, yHat.y) * M_RTOD; rot->y *= M_RTOD; rot->z *= M_RTOD; } // Creates a look-at matrix from Eye, At, and Up in mtx (MTXMODE_NEW) or applies one to mtx (MTXMODE_APPLY). // A look-at matrix is a rotation-translation matrix that maps y to Up, z to (At - Eye), and translates to Eye void Matrix_LookAt(Matrix* mtx, f32 xEye, f32 yEye, f32 zEye, f32 xAt, f32 yAt, f32 zAt, f32 xUp, f32 yUp, f32 zUp, u8 mode) { Matrix lookAt; guLookAtF(lookAt.m, xEye, yEye, zEye, xAt, yAt, zAt, xUp, yUp, zUp); Matrix_Mult(mtx, &lookAt, mode); } // Converts the current Gfx matrix to a Mtx and sets it to the display list void Matrix_SetGfxMtx(Gfx** gfx) { Matrix_ToMtx(gGfxMtx); gSPMatrix((*gfx)++, gGfxMtx++, G_MTX_NOPUSH | G_MTX_LOAD | G_MTX_MODELVIEW); }