#ifndef SF64_MATH_H #define SF64_MATH_H #include #include "libc/math.h" #include #define MTXF_NEW 0 #define MTXF_APPLY 1 typedef struct { /* 0x0 */ f32 x; /* 0x4 */ f32 y; /* 0x8 */ f32 z; } Vec3f; // size = 0xC typedef struct { /* 0x0 */ s16 x; /* 0x2 */ s16 y; /* 0x4 */ s16 z; } Vec3s; // size = 0x6; typedef struct { /* 0x00 */ Vec3f pos; /* 0x0C */ Vec3f rot; } PosRot; // size = 0x18 typedef struct { /* 0x00 */ Vec3f eye; /* 0x0C */ Vec3f at; } CameraPoint; // size = 0x18 typedef struct { /* 0x0 */ s16 vtx[3]; } Triangle; // size = 0x6 typedef struct { /* 0x0 */ Vec3f normal; /* 0xC */ f32 dist; } PlaneF; // size = 0x10 typedef struct { /* 0x0 */ Vec3s normal; /* 0x8 */ s32 dist; } PlaneI; // size = 0xC typedef union { float m[4][4]; struct { float xx, yx, zx, wx, xy, yy, zy, wy, xz, yz, zz, wz, xw, yw, zw, ww; }; // u64 force_struct_alignment; } Matrix; // size = 0x40 extern Mtx gIdentityMtx; // 800C4620 extern Matrix gIdentityMatrix; //800C4660 extern Matrix* gGfxMatrix; extern Matrix sGfxMatrixStack[]; extern Matrix* gCalcMatrix; extern Matrix sCalcMatrixStack[]; f32 Math_ModF(f32 value, f32 mod); void Rand_Init(void); f32 Rand_ZeroOne(void); void Rand_SetSeed(s32 seed1, s32 seed2, s32 seed3); f32 Rand_ZeroOneSeeded(void); f32 Math_Atan2F(f32 y, f32 x); f32 Math_Atan2F_XY(f32 x, f32 y); f32 Math_Atan2F_XYAlt(f32 x, f32 y); f32 Math_PowF(f32 base, s32 exp); void Math_MinMax(s32* min, s32* max, s32 val1, s32 val2, s32 val3); f32 Math_SmoothStepToF(f32 *value, f32 target, f32 scale, f32 maxStep, f32 minStep); f32 Math_SmoothStepToAngle(f32 *angle, f32 target, f32 scale, f32 maxStep, f32 minStep); void Math_SmoothStepToVec3fArray(Vec3f *src, Vec3f *dst, s32 mode, s32 count, f32 scale, f32 maxStep, f32 minStep); s32 Math_PursueVec3f(Vec3f *pos, Vec3f *target, Vec3f *rot, f32 stepSize, f32 scaleTurn, f32 maxTurn, f32 dist); void Math_Vec3fFromAngles(Vec3f *step, f32 xRot, f32 yRot, f32 stepsize); f32 Math_RadToDeg(f32 rAngle); // Copies src Matrix into dst void Matrix_Copy(Matrix* dst, Matrix* src); // Makes a copy of the stack's current matrix and puts it on the top of the stack void Matrix_Push(Matrix** mtxStack); // Removes the top matrix of the stack void Matrix_Pop(Matrix** mtxStack); // Copies tf into mtx (MTXF_NEW) or applies it to mtx (MTXF_APPLY) void Matrix_Mult(Matrix* mtx, Matrix* tf, u8 mode); // Creates a translation matrix in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY) void Matrix_Translate(Matrix* mtx, f32 x, f32 y, f32 z, u8 mode); // Creates a scale matrix in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY) void Matrix_Scale(Matrix* mtx, f32 xScale, f32 yScale, f32 zScale, u8 mode); // Creates rotation matrix about the X axis in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY) void Matrix_RotateX(Matrix* mtx, f32 angle, u8 mode); // Creates rotation matrix about the Y axis in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY) void Matrix_RotateY(Matrix* mtx, f32 angle, u8 mode); // Creates rotation matrix about the Z axis in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY) void Matrix_RotateZ(Matrix* mtx, f32 angle, u8 mode); // Creates rotation matrix about a given vector axis in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY). // The vector specifying the axis does not need to be a unit vector. void Matrix_RotateAxis(Matrix* mtx, f32 angle, f32 axisX, f32 axisY, f32 axisZ, u8 mode); // Converts the current Gfx matrix to a Mtx void Matrix_ToMtx(Mtx* dest); // Converts the Mtx src to a Matrix, putting the result in dest void Matrix_FromMtx(Mtx* src, Matrix* dest); // Applies the transform matrix mtx to the vector src, putting the result in dest void Matrix_MultVec3f(Matrix* mtx, Vec3f* src, Vec3f* dest); // Applies the linear part of the transformation matrix mtx to the vector src, ignoring any translation that mtx might // have. Puts the result in dest. void Matrix_MultVec3fNoTranslate(Matrix* mtx, Vec3f* src, Vec3f* dest); // Expresses the rotational part of the transform mtx as Tait-Bryan angles, in the yaw-pitch-roll (intrinsic YXZ) // convention used in worldspace calculations void Matrix_GetYRPAngles(Matrix* mtx, Vec3f* rot); // Expresses the rotational part of the transform mtx as Tait-Bryan angles, in the extrinsic XYZ convention used in // modelspace calculations void Matrix_GetXYZAngles(Matrix* mtx, Vec3f* rot); // Creates a look-at matrix from Eye, At, and Up in mtx (MTXF_NEW) or applies one to mtx (MTXF_APPLY). // A look-at matrix is a rotation-translation matrix that maps y to Up, z to (At - Eye), and translates to Eye void Matrix_LookAt(Matrix* mtx, f32 xEye, f32 yEye, f32 zEye, f32 xAt, f32 yAt, f32 zAt, f32 xUp, f32 yUp, f32 zUp, u8 mode); // Converts the current Gfx matrix to a Mtx and sets it to the display list void Matrix_SetGfxMtx(Gfx** gfx); f32 Math_FAtanF(f32); f32 Math_FAtan2F(f32, f32); f32 Math_FAsinF(f32); f32 Math_FAcosF(f32); f32 Math_FloorF(f32); f32 Math_CeilF(f32); f64 Math_Fabs(f64); f32 Math_FabsF(f32); f32 Math_NearbyIntF(f32); f32 Math_TruncF(f32); f32 Math_RoundF(f32); #endif