voice-changer/server/voice_changer/DDSP_SVC/models/ddsp/vocoder.py

640 lines
27 KiB
Python
Raw Permalink Normal View History

2023-06-22 04:46:12 +03:00
import os
import numpy as np
2023-06-23 08:00:40 +03:00
import yaml # type: ignore
2023-06-22 04:46:12 +03:00
import torch
import torch.nn.functional as F
import pyworld as pw
import parselmouth
import torchcrepe
from transformers import HubertModel, Wav2Vec2FeatureExtractor
from fairseq import checkpoint_utils
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from torchaudio.transforms import Resample
from .unit2control import Unit2Control
from .core import frequency_filter, upsample, remove_above_fmax, MaskedAvgPool1d, MedianPool1d
from ..encoder.hubert.model import HubertSoft
CREPE_RESAMPLE_KERNEL = {}
class F0_Extractor:
def __init__(self, f0_extractor, sample_rate=44100, hop_size=512, f0_min=65, f0_max=800):
self.f0_extractor = f0_extractor
self.sample_rate = sample_rate
self.hop_size = hop_size
self.f0_min = f0_min
self.f0_max = f0_max
if f0_extractor == "crepe":
key_str = str(sample_rate)
if key_str not in CREPE_RESAMPLE_KERNEL:
CREPE_RESAMPLE_KERNEL[key_str] = Resample(sample_rate, 16000, lowpass_filter_width=128)
self.resample_kernel = CREPE_RESAMPLE_KERNEL[key_str]
def extract(self, audio, uv_interp=False, device=None, silence_front=0): # audio: 1d numpy array
# extractor start time
n_frames = int(len(audio) // self.hop_size) + 1
start_frame = int(silence_front * self.sample_rate / self.hop_size)
real_silence_front = start_frame * self.hop_size / self.sample_rate
audio = audio[int(np.round(real_silence_front * self.sample_rate)) :]
# extract f0 using parselmouth
if self.f0_extractor == "parselmouth":
f0 = parselmouth.Sound(audio, self.sample_rate).to_pitch_ac(time_step=self.hop_size / self.sample_rate, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"]
pad_size = start_frame + (int(len(audio) // self.hop_size) - len(f0) + 1) // 2
f0 = np.pad(f0, (pad_size, n_frames - len(f0) - pad_size))
# extract f0 using dio
elif self.f0_extractor == "dio":
_f0, t = pw.dio(audio.astype("double"), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, channels_in_octave=2, frame_period=(1000 * self.hop_size / self.sample_rate))
f0 = pw.stonemask(audio.astype("double"), _f0, t, self.sample_rate)
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
# extract f0 using harvest
elif self.f0_extractor == "harvest":
f0, _ = pw.harvest(audio.astype("double"), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=(1000 * self.hop_size / self.sample_rate))
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
# extract f0 using crepe
elif self.f0_extractor == "crepe":
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
resample_kernel = self.resample_kernel.to(device)
wav16k_torch = resample_kernel(torch.FloatTensor(audio).unsqueeze(0).to(device))
f0, pd = torchcrepe.predict(wav16k_torch, 16000, 80, self.f0_min, self.f0_max, pad=True, model="full", batch_size=512, device=device, return_periodicity=True)
pd = MedianPool1d(pd, 4)
f0 = torchcrepe.threshold.At(0.05)(f0, pd)
f0 = MaskedAvgPool1d(f0, 4)
f0 = f0.squeeze(0).cpu().numpy()
f0 = np.array([f0[int(min(int(np.round(n * self.hop_size / self.sample_rate / 0.005)), len(f0) - 1))] for n in range(n_frames - start_frame)])
f0 = np.pad(f0, (start_frame, 0))
else:
2023-06-23 08:00:40 +03:00
raise ValueError(f" [x] Unknown f0 extractor: {f0_extractor}") # NOQA # type: ignore
2023-06-22 04:46:12 +03:00
# interpolate the unvoiced f0
if uv_interp:
uv = f0 == 0
if len(f0[~uv]) > 0:
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
f0[f0 < self.f0_min] = self.f0_min
return f0
class Volume_Extractor:
def __init__(self, hop_size=512):
self.hop_size = hop_size
def extract(self, audio): # audio: 1d numpy array
n_frames = int(len(audio) // self.hop_size) + 1
audio2 = audio**2
audio2 = np.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode="reflect")
volume = np.array([np.mean(audio2[int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)])
volume = np.sqrt(volume)
return volume
class Units_Encoder:
def __init__(self, encoder, encoder_ckpt, encoder_sample_rate=16000, encoder_hop_size=320, device=None, cnhubertsoft_gate=10):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
is_loaded_encoder = False
if encoder == "hubertsoft":
self.model = Audio2HubertSoft(encoder_ckpt).to(device)
is_loaded_encoder = True
if encoder == "hubertbase":
self.model = Audio2HubertBase(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "hubertbase768":
self.model = Audio2HubertBase768(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "hubertbase768l12":
self.model = Audio2HubertBase768L12(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "hubertlarge1024l24":
self.model = Audio2HubertLarge1024L24(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "contentvec":
self.model = Audio2ContentVec(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "contentvec768":
self.model = Audio2ContentVec768(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "contentvec768l12":
self.model = Audio2ContentVec768L12(encoder_ckpt, device=device)
is_loaded_encoder = True
if encoder == "cnhubertsoftfish":
self.model = CNHubertSoftFish(encoder_ckpt, device=device, gate_size=cnhubertsoft_gate)
is_loaded_encoder = True
if not is_loaded_encoder:
raise ValueError(f" [x] Unknown units encoder: {encoder}")
self.resample_kernel = {}
self.encoder_sample_rate = encoder_sample_rate
self.encoder_hop_size = encoder_hop_size
def encode(self, audio, sample_rate, hop_size): # B, T
# resample
if sample_rate == self.encoder_sample_rate:
audio_res = audio
else:
key_str = str(sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(sample_rate, self.encoder_sample_rate, lowpass_filter_width=128).to(self.device)
audio_res = self.resample_kernel[key_str](audio)
# encode
if audio_res.size(-1) < 400:
audio_res = torch.nn.functional.pad(audio, (0, 400 - audio_res.size(-1)))
units = self.model(audio_res)
# alignment
n_frames = audio.size(-1) // hop_size + 1
ratio = (hop_size / sample_rate) / (self.encoder_hop_size / self.encoder_sample_rate)
index = torch.clamp(torch.round(ratio * torch.arange(n_frames).to(self.device)).long(), max=units.size(1) - 1)
units_aligned = torch.gather(units, 1, index.unsqueeze(0).unsqueeze(-1).repeat([1, 1, units.size(-1)]))
return units_aligned
class Audio2HubertSoft(torch.nn.Module):
def __init__(self, path, h_sample_rate=16000, h_hop_size=320):
super().__init__()
print(" [Encoder Model] HuBERT Soft")
self.hubert = HubertSoft()
print(" [Loading] " + path)
checkpoint = torch.load(path)
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
self.hubert.load_state_dict(checkpoint)
self.hubert.eval()
def forward(self, audio): # B, T
with torch.inference_mode():
units = self.hubert.units(audio.unsqueeze(1))
return units
class Audio2ContentVec:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] Content Vec")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self, audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = self.hubert.final_proj(logits[0])
units = feats # .transpose(2, 1)
return units
class Audio2ContentVec768:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] Content Vec")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self, audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = logits[0]
units = feats # .transpose(2, 1)
return units
class Audio2ContentVec768L12:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] Content Vec")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert.eval()
def __call__(self, audio): # B, T
# wav_tensor = torch.from_numpy(audio).to(self.device)
wav_tensor = audio
feats = wav_tensor.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_tensor.device),
"padding_mask": padding_mask.to(wav_tensor.device),
"output_layer": 12, # layer 12
}
with torch.no_grad():
logits = self.hubert.extract_features(**inputs)
feats = logits[0]
units = feats # .transpose(2, 1)
return units
class CNHubertSoftFish(torch.nn.Module):
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu", gate_size=10):
super().__init__()
self.device = device
self.gate_size = gate_size
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./pretrain/TencentGameMate/chinese-hubert-base")
self.model = HubertModel.from_pretrained("./pretrain/TencentGameMate/chinese-hubert-base")
self.proj = torch.nn.Sequential(torch.nn.Dropout(0.1), torch.nn.Linear(768, 256))
# self.label_embedding = nn.Embedding(128, 256)
state_dict = torch.load(path, map_location=device)
self.load_state_dict(state_dict)
@torch.no_grad()
def forward(self, audio):
input_values = self.feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_values
input_values = input_values.to(self.model.device)
return self._forward(input_values[0])
@torch.no_grad()
def _forward(self, input_values):
features = self.model(input_values)
features = self.proj(features.last_hidden_state)
# Top-k gating
topk, indices = torch.topk(features, self.gate_size, dim=2)
features = torch.zeros_like(features).scatter(2, indices, topk)
features = features / features.sum(2, keepdim=True)
return features.to(self.device) # .transpose(1, 2)
class Audio2HubertBase:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] HuBERT Base")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self, audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
logits = self.hubert.extract_features(**inputs)
units = self.hubert.final_proj(logits[0])
return units
class Audio2HubertBase768:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] HuBERT Base")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self, audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
logits = self.hubert.extract_features(**inputs)
units = logits[0]
return units
class Audio2HubertBase768L12:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] HuBERT Base")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self, audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 12, # layer 12
}
logits = self.hubert.extract_features(**inputs)
units = logits[0]
return units
class Audio2HubertLarge1024L24:
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device="cpu"):
self.device = device
print(" [Encoder Model] HuBERT Base")
print(" [Loading] " + path)
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task(
[path],
suffix="",
)
self.hubert = self.models[0]
self.hubert = self.hubert.to(self.device)
self.hubert = self.hubert.float()
self.hubert.eval()
def __call__(self, audio): # B, T
with torch.no_grad():
padding_mask = torch.BoolTensor(audio.shape).fill_(False)
inputs = {
"source": audio.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 24, # layer 24
}
logits = self.hubert.extract_features(**inputs)
units = logits[0]
return units
class DotDict(dict):
2023-06-23 08:00:40 +03:00
def __getattr__(*args): # type: ignore
2023-06-22 04:46:12 +03:00
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
2023-06-23 08:00:40 +03:00
__setattr__ = dict.__setitem__ # type: ignore
__delattr__ = dict.__delitem__ # type: ignore
2023-06-22 04:46:12 +03:00
def load_model(model_path, device="cpu"):
config_file = os.path.join(os.path.split(model_path)[0], "config.yaml")
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load model
model = None
if args.model.type == "Sins":
model = Sins(sampling_rate=args.data.sampling_rate, block_size=args.data.block_size, n_harmonics=args.model.n_harmonics, n_mag_allpass=args.model.n_mag_allpass, n_mag_noise=args.model.n_mag_noise, n_unit=args.data.encoder_out_channels, n_spk=args.model.n_spk)
elif args.model.type == "CombSub":
model = CombSub(sampling_rate=args.data.sampling_rate, block_size=args.data.block_size, n_mag_allpass=args.model.n_mag_allpass, n_mag_harmonic=args.model.n_mag_harmonic, n_mag_noise=args.model.n_mag_noise, n_unit=args.data.encoder_out_channels, n_spk=args.model.n_spk)
elif args.model.type == "CombSubFast":
model = CombSubFast(sampling_rate=args.data.sampling_rate, block_size=args.data.block_size, n_unit=args.data.encoder_out_channels, n_spk=args.model.n_spk)
else:
raise ValueError(f" [x] Unknown Model: {args.model.type}")
print(" [Loading] " + model_path)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.to(device)
model.load_state_dict(ckpt["model"])
model.eval()
return model, args
class Sins(torch.nn.Module):
def __init__(self, sampling_rate, block_size, n_harmonics, n_mag_allpass, n_mag_noise, n_unit=256, n_spk=1):
super().__init__()
print(" [DDSP Model] Sinusoids Additive Synthesiser")
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
# Unit2Control
split_map = {
"amplitudes": n_harmonics,
"group_delay": n_mag_allpass,
"noise_magnitude": n_mag_noise,
}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, max_upsample_dim=32):
"""
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
"""
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase = 2 * np.pi * x
phase_frames = phase[:, :: self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
amplitudes_frames = torch.exp(ctrls["amplitudes"]) / 128
group_delay = np.pi * torch.tanh(ctrls["group_delay"])
noise_param = torch.exp(ctrls["noise_magnitude"]) / 128
# sinusoids exciter signal
amplitudes_frames = remove_above_fmax(amplitudes_frames, f0_frames, self.sampling_rate / 2, level_start=1)
n_harmonic = amplitudes_frames.shape[-1]
level_harmonic = torch.arange(1, n_harmonic + 1).to(phase)
sinusoids = 0.0
for n in range((n_harmonic - 1) // max_upsample_dim + 1):
start = n * max_upsample_dim
end = (n + 1) * max_upsample_dim
phases = phase * level_harmonic[start:end]
amplitudes = upsample(amplitudes_frames[:, :, start:end], self.block_size)
sinusoids += (torch.sin(phases) * amplitudes).sum(-1)
# harmonic part filter (apply group-delay)
harmonic = frequency_filter(sinusoids, torch.exp(1.0j * torch.cumsum(group_delay, axis=-1)), hann_window=False)
# noise part filter
noise = torch.rand_like(harmonic) * 2 - 1
noise = frequency_filter(noise, torch.complex(noise_param, torch.zeros_like(noise_param)), hann_window=True)
signal = harmonic + noise
return signal, phase, (harmonic, noise) # , (noise_param, noise_param)
class CombSubFast(torch.nn.Module):
def __init__(self, sampling_rate, block_size, n_unit=256, n_spk=1):
super().__init__()
print(" [DDSP Model] Combtooth Subtractive Synthesiser")
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
self.register_buffer("window", torch.sqrt(torch.hann_window(2 * block_size)))
# Unit2Control
split_map = {"harmonic_magnitude": block_size + 1, "harmonic_phase": block_size + 1, "noise_magnitude": block_size + 1}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, **kwargs):
"""
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
"""
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase_frames = 2 * np.pi * x[:, :: self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
src_filter = torch.exp(ctrls["harmonic_magnitude"] + 1.0j * np.pi * ctrls["harmonic_phase"])
src_filter = torch.cat((src_filter, src_filter[:, -1:, :]), 1)
noise_filter = torch.exp(ctrls["noise_magnitude"]) / 128
noise_filter = torch.cat((noise_filter, noise_filter[:, -1:, :]), 1)
# combtooth exciter signal
combtooth = torch.sinc(self.sampling_rate * x / (f0 + 1e-3))
combtooth = combtooth.squeeze(-1)
combtooth_frames = F.pad(combtooth, (self.block_size, self.block_size)).unfold(1, 2 * self.block_size, self.block_size)
combtooth_frames = combtooth_frames * self.window
combtooth_fft = torch.fft.rfft(combtooth_frames, 2 * self.block_size)
# noise exciter signal
noise = torch.rand_like(combtooth) * 2 - 1
noise_frames = F.pad(noise, (self.block_size, self.block_size)).unfold(1, 2 * self.block_size, self.block_size)
noise_frames = noise_frames * self.window
noise_fft = torch.fft.rfft(noise_frames, 2 * self.block_size)
# apply the filters
signal_fft = combtooth_fft * src_filter + noise_fft * noise_filter
# take the ifft to resynthesize audio.
signal_frames_out = torch.fft.irfft(signal_fft, 2 * self.block_size) * self.window
# overlap add
fold = torch.nn.Fold(output_size=(1, (signal_frames_out.size(1) + 1) * self.block_size), kernel_size=(1, 2 * self.block_size), stride=(1, self.block_size))
signal = fold(signal_frames_out.transpose(1, 2))[:, 0, 0, self.block_size : -self.block_size]
return signal, phase_frames, (signal, signal)
class CombSub(torch.nn.Module):
def __init__(self, sampling_rate, block_size, n_mag_allpass, n_mag_harmonic, n_mag_noise, n_unit=256, n_spk=1):
super().__init__()
print(" [DDSP Model] Combtooth Subtractive Synthesiser (Old Version)")
# params
self.register_buffer("sampling_rate", torch.tensor(sampling_rate))
self.register_buffer("block_size", torch.tensor(block_size))
# Unit2Control
split_map = {"group_delay": n_mag_allpass, "harmonic_magnitude": n_mag_harmonic, "noise_magnitude": n_mag_noise}
self.unit2ctrl = Unit2Control(n_unit, n_spk, split_map)
def forward(self, units_frames, f0_frames, volume_frames, spk_id=None, spk_mix_dict=None, initial_phase=None, infer=True, **kwargs):
"""
units_frames: B x n_frames x n_unit
f0_frames: B x n_frames x 1
volume_frames: B x n_frames x 1
spk_id: B x 1
"""
# exciter phase
f0 = upsample(f0_frames, self.block_size)
if infer:
x = torch.cumsum(f0.double() / self.sampling_rate, axis=1)
else:
x = torch.cumsum(f0 / self.sampling_rate, axis=1)
if initial_phase is not None:
x += initial_phase.to(x) / 2 / np.pi
x = x - torch.round(x)
x = x.to(f0)
phase_frames = 2 * np.pi * x[:, :: self.block_size, :]
# parameter prediction
ctrls = self.unit2ctrl(units_frames, f0_frames, phase_frames, volume_frames, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
group_delay = np.pi * torch.tanh(ctrls["group_delay"])
src_param = torch.exp(ctrls["harmonic_magnitude"])
noise_param = torch.exp(ctrls["noise_magnitude"]) / 128
# combtooth exciter signal
combtooth = torch.sinc(self.sampling_rate * x / (f0 + 1e-3))
combtooth = combtooth.squeeze(-1)
# harmonic part filter (using dynamic-windowed LTV-FIR, with group-delay prediction)
harmonic = frequency_filter(combtooth, torch.exp(1.0j * torch.cumsum(group_delay, axis=-1)), hann_window=False)
harmonic = frequency_filter(harmonic, torch.complex(src_param, torch.zeros_like(src_param)), hann_window=True, half_width_frames=1.5 * self.sampling_rate / (f0_frames + 1e-3))
# noise part filter (using constant-windowed LTV-FIR, without group-delay)
noise = torch.rand_like(harmonic) * 2 - 1
noise = frequency_filter(noise, torch.complex(noise_param, torch.zeros_like(noise_param)), hann_window=True)
signal = harmonic + noise
return signal, phase_frames, (harmonic, noise)