voice-changer/server/voice_changer/RVC/pipeline/PipelineGenerator.py

89 lines
2.5 KiB
Python
Raw Normal View History

2023-05-04 17:50:52 +03:00
import os
import traceback
import numpy as np
import faiss
from voice_changer.RVC.ModelSlot import ModelSlot
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
from voice_changer.RVC.inferencer.InferencerManager import InferencerManager
from voice_changer.RVC.pipeline.Pipeline import Pipeline
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
def createPipeline(modelSlot: ModelSlot, gpu: int, f0Detector: str):
dev = DeviceManager.get_instance().getDevice(gpu)
half = DeviceManager.get_instance().halfPrecisionAvailable(gpu)
# ファイル名特定(Inferencer)
inferencerFilename = (
modelSlot.onnxModelFile if modelSlot.isONNX else modelSlot.pyTorchModelFile
)
# Inferencer 生成
try:
inferencer = InferencerManager.getInferencer(
modelSlot.modelType,
inferencerFilename,
half,
dev,
)
except Exception as e:
print("[Voice Changer] exception! loading inferencer", e)
traceback.print_exc()
# Embedder 生成
try:
embedder = EmbedderManager.getEmbedder(
modelSlot.embedder,
# emmbedderFilename,
half,
dev,
)
except Exception as e:
print("[Voice Changer] exception! loading embedder", e)
traceback.print_exc()
# pitchExtractor
pitchExtractor = PitchExtractorManager.getPitchExtractor(f0Detector)
# index, feature
index, feature = _loadIndex(modelSlot)
pipeline = Pipeline(
embedder,
inferencer,
pitchExtractor,
index,
feature,
modelSlot.samplingRate,
dev,
half,
)
return pipeline
def _loadIndex(modelSlot: ModelSlot):
# Indexのロード
print("[Voice Changer] Loading index...")
# ファイル指定がない場合はNone
if modelSlot.featureFile is None or modelSlot.indexFile is None:
return None, None
# ファイル指定があってもファイルがない場合はNone
if (
os.path.exists(modelSlot.featureFile) is not True
or os.path.exists(modelSlot.indexFile) is not True
):
return None, None
try:
index = faiss.read_index(modelSlot.indexFile)
feature = np.load(modelSlot.featureFile)
except:
print("[Voice Changer] load index failed. Use no index.")
traceback.print_exc()
return None, None
return index, feature