voice-changer/server/voice_changer/DiffusionSVC/DiffusionSVCModelSlotGenerator.py

94 lines
4.0 KiB
Python
Raw Normal View History

2023-07-12 18:59:48 +03:00
import os
from const import EnumInferenceTypes
from dataclasses import asdict
import onnxruntime
import json
from data.ModelSlot import DiffusionSVCModelSlot, ModelSlot, RVCModelSlot
2023-07-15 04:01:42 +03:00
from voice_changer.DiffusionSVC.inferencer.diffusion_svc_model.diffusion.unit2mel import load_model_vocoder_from_combo
2023-07-12 18:59:48 +03:00
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.ModelSlotGenerator import ModelSlotGenerator
class DiffusionSVCModelSlotGenerator(ModelSlotGenerator):
@classmethod
def loadModel(cls, props: LoadModelParams):
slotInfo: DiffusionSVCModelSlot = DiffusionSVCModelSlot()
for file in props.files:
if file.kind == "diffusionSVCModel":
slotInfo.modelFile = file.name
slotInfo.defaultTune = 0
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
slotInfo.iconFile = "/assets/icons/noimage.png"
2023-07-13 21:33:04 +03:00
slotInfo.embChannels = 768
2023-07-12 18:59:48 +03:00
2023-07-15 04:01:42 +03:00
if slotInfo.isONNX:
slotInfo = cls._setInfoByONNX(slotInfo)
else:
slotInfo = cls._setInfoByPytorch(slotInfo)
2023-07-12 18:59:48 +03:00
return slotInfo
@classmethod
2023-07-15 04:01:42 +03:00
def _setInfoByPytorch(cls, slot: DiffusionSVCModelSlot):
diff_model, diff_args, naive_model, naive_args, vocoder = load_model_vocoder_from_combo(slot.modelFile, device="cpu")
slot.kStepMax = diff_args.model.k_step_max
slot.nLayers = diff_args.model.n_layers
slot.nnLayers = naive_args.model.n_layers
diff_args.model.n_spk
slot.speakers = {(x+1): f"user{x+1}" for x in range(diff_args.model.n_spk)}
2023-07-12 18:59:48 +03:00
return slot
@classmethod
def _setInfoByONNX(cls, slot: ModelSlot):
tmp_onnx_session = onnxruntime.InferenceSession(slot.modelFile, providers=["CPUExecutionProvider"])
modelmeta = tmp_onnx_session.get_modelmeta()
try:
slot = RVCModelSlot(**asdict(slot))
metadata = json.loads(modelmeta.custom_metadata_map["metadata"])
# slot.modelType = metadata["modelType"]
slot.embChannels = metadata["embChannels"]
slot.embOutputLayer = metadata["embOutputLayer"] if "embOutputLayer" in metadata else 9
slot.useFinalProj = metadata["useFinalProj"] if "useFinalProj" in metadata else True if slot.embChannels == 256 else False
if slot.embChannels == 256:
slot.useFinalProj = True
else:
slot.useFinalProj = False
# ONNXモデルの情報を表示
if slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True:
print("[Voice Changer] ONNX Model: Official v1 like")
elif slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False:
print("[Voice Changer] ONNX Model: Official v2 like")
else:
print(f"[Voice Changer] ONNX Model: ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}")
if "embedder" not in metadata:
slot.embedder = "hubert_base"
else:
slot.embedder = metadata["embedder"]
slot.f0 = metadata["f0"]
slot.modelType = EnumInferenceTypes.onnxRVC.value if slot.f0 else EnumInferenceTypes.onnxRVCNono.value
slot.samplingRate = metadata["samplingRate"]
slot.deprecated = False
except Exception as e:
slot.modelType = EnumInferenceTypes.onnxRVC.value
slot.embChannels = 256
slot.embedder = "hubert_base"
slot.f0 = True
slot.samplingRate = 48000
slot.deprecated = True
print("[Voice Changer] setInfoByONNX", e)
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.")
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
del tmp_onnx_session
return slot