voice-changer/server/voice_changer/RVC/inferencer/OnnxRVCInferencerNono.py

58 lines
1.8 KiB
Python
Raw Normal View History

2023-05-02 14:57:12 +03:00
import torch
from torch import device
import onnxruntime
from const import EnumInferenceTypes
import numpy as np
2023-05-03 07:14:00 +03:00
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer
2023-05-02 14:57:12 +03:00
providers = ["CPUExecutionProvider"]
2023-05-03 07:14:00 +03:00
class OnnxRVCInferencerNono(OnnxRVCInferencer):
2023-05-02 14:57:12 +03:00
def loadModel(self, file: str, dev: device, isHalf: bool = True):
super().setProps(EnumInferenceTypes.onnxRVC, file, dev, isHalf)
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
2023-05-09 13:20:07 +03:00
onnx_session = onnxruntime.InferenceSession(file, providers=providers)
2023-05-02 14:57:12 +03:00
# check half-precision
2023-05-09 13:20:07 +03:00
first_input_type = onnx_session.get_inputs()[0].type
2023-05-02 14:57:12 +03:00
if first_input_type == "tensor(float)":
self.isHalf = False
else:
self.isHalf = True
self.model = onnx_session
return self
def infer(
self,
feats: torch.Tensor,
pitch_length: torch.Tensor,
pitch: torch.Tensor | None,
pitchf: torch.Tensor | None,
sid: torch.Tensor,
) -> torch.Tensor:
if self.isHalf:
audio1 = self.model.run(
["audio"],
{
"feats": feats.cpu().numpy().astype(np.float16),
"p_len": pitch_length.cpu().numpy().astype(np.int64),
"sid": sid.cpu().numpy().astype(np.int64),
},
)
else:
audio1 = self.model.run(
["audio"],
{
"feats": feats.cpu().numpy().astype(np.float32),
"p_len": pitch_length.cpu().numpy().astype(np.int64),
"sid": sid.cpu().numpy().astype(np.int64),
},
)
return torch.tensor(np.array(audio1))