voice-changer/server/voice_changer/VoiceChangerV2.py

332 lines
14 KiB
Python
Raw Normal View History

2023-07-14 22:45:27 +03:00
'''
VoiceChangerV2
- VoiceChangerとの差分
リサンプル処理の無駄を省くためVoiceChangerModelにリサンプル処理を移譲
前処理メイン処理の分割を廃止(VoiceChangeModelでの無駄な型変換などを回避するため)
- 適用VoiceChangerModel
DiffusionSVC
'''
from typing import Any, Union
from const import TMP_DIR
import torch
import os
import traceback
import numpy as np
from dataclasses import dataclass, asdict, field
import onnxruntime
from voice_changer.IORecorder import IORecorder
from voice_changer.utils.Timer import Timer
from voice_changer.utils.VoiceChangerModel import AudioInOut, VoiceChangerModel
from Exceptions import (
DeviceCannotSupportHalfPrecisionException,
DeviceChangingException,
HalfPrecisionChangingException,
NoModeLoadedException,
NotEnoughDataExtimateF0,
ONNXInputArgumentException,
VoiceChangerIsNotSelectedException,
)
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
@dataclass
class VoiceChangerV2Settings:
inputSampleRate: int = 48000 # 48000 or 24000
outputSampleRate: int = 48000 # 48000 or 24000
crossFadeOffsetRate: float = 0.1
crossFadeEndRate: float = 0.9
crossFadeOverlapSize: int = 4096
recordIO: int = 0 # 0:off, 1:on
performance: list[int] = field(default_factory=lambda: [0, 0, 0, 0])
# ↓mutableな物だけ列挙
intData: list[str] = field(
default_factory=lambda: [
"inputSampleRate",
"outputSampleRate",
"crossFadeOverlapSize",
"recordIO",
]
)
floatData: list[str] = field(
default_factory=lambda: [
"crossFadeOffsetRate",
"crossFadeEndRate",
]
)
strData: list[str] = field(default_factory=lambda: [])
class VoiceChangerV2:
ioRecorder: IORecorder
sola_buffer: AudioInOut
def __init__(self, params: VoiceChangerParams):
# 初期化
self.settings = VoiceChangerV2Settings()
self.currentCrossFadeOffsetRate = 0.0
self.currentCrossFadeEndRate = 0.0
self.currentCrossFadeOverlapSize = 0 # setting
self.crossfadeSize = 0 # calculated
self.voiceChanger: VoiceChangerModel | None = None
self.params = params
self.gpu_num = torch.cuda.device_count()
self.prev_audio = np.zeros(4096)
self.mps_enabled: bool = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
self.onnx_device = onnxruntime.get_device()
print(f"VoiceChangerV2 Initialized (GPU_NUM(cuda):{self.gpu_num}, mps_enabled:{self.mps_enabled}, onnx_device:{self.onnx_device})")
def setModel(self, model: VoiceChangerModel):
self.voiceChanger = model
self.voiceChanger.setSamplingRate(self.settings.inputSampleRate, self.settings.outputSampleRate)
def get_info(self):
data = asdict(self.settings)
if self.voiceChanger is not None:
data.update(self.voiceChanger.get_info())
return data
def get_performance(self):
return self.settings.performance
def update_settings(self, key: str, val: Any):
if self.voiceChanger is None:
print("[Voice Changer] Voice Changer is not selected.")
return self.get_info()
if key == "serverAudioStated" and val == 0:
self.settings.inputSampleRate = 48000
self.settings.outputSampleRate = 48000
self.voiceChanger.setSamplingRate(self.settings.inputSampleRate, self.settings.outputSampleRate)
if key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
self.crossfadeSize = 0
if key == "recordIO" and val == 1:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
self.ioRecorder = IORecorder(STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate, self.settings.outputSampleRate)
if key == "recordIO" and val == 0:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
pass
if key == "recordIO" and val == 2:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
if key == "inputSampleRate" or key == "outputSampleRate":
self.voiceChanger.setSamplingRate(self.settings.inputSampleRate, self.settings.outputSampleRate)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
ret = self.voiceChanger.update_settings(key, val)
if ret is False:
pass
# print(f"({key} is not mutable variable or unknown variable)")
return self.get_info()
def _generate_strength(self, crossfadeSize: int):
if self.crossfadeSize != crossfadeSize or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize:
self.crossfadeSize = crossfadeSize
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
cf_offset = int(crossfadeSize * self.settings.crossFadeOffsetRate)
cf_end = int(crossfadeSize * self.settings.crossFadeEndRate)
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
self.np_prev_strength = np.concatenate(
[
np.ones(cf_offset),
np_prev_strength,
np.zeros(crossfadeSize - cf_offset - len(np_prev_strength)),
]
)
self.np_cur_strength = np.concatenate(
[
np.zeros(cf_offset),
np_cur_strength,
np.ones(crossfadeSize - cf_offset - len(np_cur_strength)),
]
)
print(f"Generated Strengths: for prev:{self.np_prev_strength.shape}, for cur:{self.np_cur_strength.shape}")
# ひとつ前の結果とサイズが変わるため、記録は消去する。
if hasattr(self, "np_prev_audio1") is True:
delattr(self, "np_prev_audio1")
if hasattr(self, "sola_buffer") is True:
del self.sola_buffer
def get_processing_sampling_rate(self):
if self.voiceChanger is None:
return 0
else:
return self.voiceChanger.get_processing_sampling_rate()
# receivedData: tuple of short
def on_request(self, receivedData: AudioInOut) -> tuple[AudioInOut, list[Union[int, float]]]:
try:
if self.voiceChanger is None:
raise VoiceChangerIsNotSelectedException("Voice Changer is not selected.")
with Timer("main-process") as t:
processing_sampling_rate = self.voiceChanger.get_processing_sampling_rate()
sola_search_frame = int(0.012 * processing_sampling_rate)
block_frame = receivedData.shape[0]
crossfade_frame = min(self.settings.crossFadeOverlapSize, block_frame)
self._generate_strength(crossfade_frame)
# data = self.voiceChanger.generate_input(newData, block_frame, crossfade_frame, sola_search_frame)
audio = self.voiceChanger.inference(
receivedData,
crossfade_frame=crossfade_frame,
sola_search_frame=sola_search_frame
)
if hasattr(self, "sola_buffer") is True:
np.set_printoptions(threshold=10000)
audio_offset = -1 * (sola_search_frame + crossfade_frame + block_frame)
audio = audio[audio_offset:]
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC, https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI
cor_nom = np.convolve(
audio[: crossfade_frame + sola_search_frame],
np.flip(self.sola_buffer),
"valid",
)
cor_den = np.sqrt(
np.convolve(
audio[: crossfade_frame + sola_search_frame] ** 2,
np.ones(crossfade_frame),
"valid",
)
+ 1e-3
)
sola_offset = int(np.argmax(cor_nom / cor_den))
sola_end = sola_offset + block_frame
output_wav = audio[sola_offset:sola_end].astype(np.float64)
output_wav[:crossfade_frame] *= self.np_cur_strength
output_wav[:crossfade_frame] += self.sola_buffer[:]
result = output_wav
else:
print("[Voice Changer] warming up... generating sola buffer.")
result = np.zeros(4096).astype(np.int16)
if hasattr(self, "sola_buffer") is True and sola_offset < sola_search_frame:
offset = -1 * (sola_search_frame + crossfade_frame - sola_offset)
end = -1 * (sola_search_frame - sola_offset)
sola_buf_org = audio[offset:end]
self.sola_buffer = sola_buf_org * self.np_prev_strength
else:
self.sola_buffer = audio[-crossfade_frame:] * self.np_prev_strength
# self.sola_buffer = audio[- crossfade_frame:]
mainprocess_time = t.secs
# 後処理
with Timer("post-process") as t:
result = result.astype(np.int16)
print_convert_processing(f" Output data size of {result.shape[0]}/{processing_sampling_rate}hz {result .shape[0]}/{self.settings.outputSampleRate}hz")
if receivedData.shape[0] != result .shape[0]:
outputData = pad_array(result, receivedData.shape[0])
pass
else:
outputData = result
if self.settings.recordIO == 1:
self.ioRecorder.writeInput(receivedData)
self.ioRecorder.writeOutput(outputData.tobytes())
postprocess_time = t.secs
print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}")
perf = [0, mainprocess_time, postprocess_time]
return outputData, perf
except NoModeLoadedException as e:
print("[Voice Changer] [Exception]", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except ONNXInputArgumentException as e:
print("[Voice Changer] [Exception] onnx are waiting valid input.", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except HalfPrecisionChangingException:
print("[Voice Changer] Switching model configuration....")
return np.zeros(1).astype(np.int16), [0, 0, 0]
except NotEnoughDataExtimateF0:
print("[Voice Changer] warming up... waiting more data.")
return np.zeros(1).astype(np.int16), [0, 0, 0]
except DeviceChangingException as e:
print("[Voice Changer] embedder:", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except VoiceChangerIsNotSelectedException:
print("[Voice Changer] Voice Changer is not selected. Wait a bit and if there is no improvement, please re-select vc.")
return np.zeros(1).astype(np.int16), [0, 0, 0]
except DeviceCannotSupportHalfPrecisionException:
# RVC.pyでfallback処理をするので、ここはダミーデータ返すだけ。
return np.zeros(1).astype(np.int16), [0, 0, 0]
except Exception as e:
print("[Voice Changer] VC PROCESSING EXCEPTION!!!", e)
print(traceback.format_exc())
return np.zeros(1).astype(np.int16), [0, 0, 0]
def export2onnx(self):
return self.voiceChanger.export2onnx()
##############
def merge_models(self, request: str):
if self.voiceChanger is None:
print("[Voice Changer] Voice Changer is not selected.")
return
self.voiceChanger.merge_models(request)
return self.get_info()
PRINT_CONVERT_PROCESSING: bool = False
# PRINT_CONVERT_PROCESSING = True
def print_convert_processing(mess: str):
if PRINT_CONVERT_PROCESSING is True:
print(mess)
def pad_array(arr: AudioInOut, target_length: int):
current_length = arr.shape[0]
if current_length >= target_length:
return arr
else:
pad_width = target_length - current_length
pad_left = pad_width // 2
pad_right = pad_width - pad_left
# padded_arr = np.pad(
# arr, (pad_left, pad_right), "constant", constant_values=(0, 0)
# )
padded_arr = np.pad(arr, (pad_left, pad_right), "edge")
return padded_arr