voice-changer/demo/SoftVcServerSIO.py

116 lines
3.9 KiB
Python
Raw Normal View History

2022-09-18 22:41:21 +03:00
import eventlet
import socketio
import sys, math, base64
from datetime import datetime
import struct
import torch, torchaudio
import numpy as np
from scipy.io.wavfile import write, read
sys.path.append("/hubert")
from hubert import hubert_discrete, hubert_soft, kmeans100
sys.path.append("/acoustic-model")
from acoustic import hubert_discrete, hubert_soft
sys.path.append("/hifigan")
from hifigan import hifigan
hubert_model = torch.load("/models/bshall_hubert_main.pt").cuda()
acoustic_model = torch.load("/models/bshall_acoustic-model_main.pt").cuda()
hifigan_model = torch.load("/models/bshall_hifigan_main.pt").cuda()
def applyVol(i, chunk, vols):
curVol = vols[i] / 2
if curVol < 0.0001:
line = torch.zeros(chunk.size())
else:
line = torch.ones(chunk.size())
volApplied = torch.mul(line, chunk)
volApplied = volApplied.unsqueeze(0)
return volApplied
class MyCustomNamespace(socketio.Namespace):
def __init__(self, namespace):
super().__init__(namespace)
def on_connect(self, sid, environ):
print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
def on_request_message(self, sid, msg):
print("Processing Request...")
gpu = int(msg[0])
srcId = int(msg[1])
dstId = int(msg[2])
timestamp = int(msg[3])
data = msg[4]
# print(srcId, dstId, timestamp)
unpackedData = np.array(struct.unpack('<%sh'%(len(data) // struct.calcsize('<h') ), data))
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
source, sr = torchaudio.load("logs/received_data.wav") # デフォルトでnormalize=Trueがついており、float32に変換して読んでくれるらしいのでこれを使う。https://pytorch.org/audio/stable/backend.html
source_16k = torchaudio.functional.resample(source, 24000, 16000)
source_16k = source_16k.unsqueeze(0).cuda()
# SOFT-VC
with torch.inference_mode():
units = hubert_model.units(source_16k)
mel = acoustic_model.generate(units).transpose(1, 2)
target = hifigan_model(mel)
dest = torchaudio.functional.resample(target, 16000,24000)
dest = dest.squeeze().cpu()
# ソースの音量取得
source = source.cpu()
specgram = torchaudio.transforms.MelSpectrogram(sample_rate=24000)(source)
vol_apply_window_size = math.ceil(len(source[0]) / specgram.size()[2])
specgram = specgram.transpose(1,2)
vols = [ torch.max(i) for i in specgram[0]]
chunks = torch.split(dest, vol_apply_window_size,0)
chunks = [applyVol(i,c,vols) for i, c in enumerate(chunks)]
dest = torch.cat(chunks,1)
arr = np.array(dest.squeeze())
int_size = 2**(16 - 1) - 1
arr = (arr * int_size).astype(np.int16)
# write("logs/converted_data.wav", 24000, arr)
# changedVoiceBase64 = base64.b64encode(arr).decode('utf-8')
# data = {
# "gpu":gpu,
# "srcId":srcId,
# "dstId":dstId,
# "timestamp":timestamp,
# "changedVoiceBase64":changedVoiceBase64
# }
# audio1 = audio1.astype(np.int16)
bin = struct.pack('<%sh'%len(arr), *arr)
# print("return timestamp", timestamp)
self.emit('response',[timestamp, bin])
def on_disconnect(self, sid):
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
pass;
if __name__ == '__main__':
args = sys.argv
PORT = args[1]
print(f"start... PORT:{PORT}")
sio = socketio.Server(cors_allowed_origins='*')
sio.register_namespace(MyCustomNamespace('/test'))
app = socketio.WSGIApp(sio,static_files={
'': '../frontend/dist',
'/': '../frontend/dist/index.html',
})
eventlet.wsgi.server(eventlet.listen(('0.0.0.0',int(PORT))), app)