2023-04-07 22:56:32 +03:00
|
|
|
import numpy as np
|
|
|
|
import parselmouth
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
2023-04-28 04:30:07 +03:00
|
|
|
from config import x_query, x_center, x_max # type:ignore
|
2023-04-07 22:56:32 +03:00
|
|
|
import scipy.signal as signal
|
|
|
|
import pyworld
|
|
|
|
|
|
|
|
|
|
|
|
class VC(object):
|
|
|
|
def __init__(self, tgt_sr, device, is_half, x_pad):
|
|
|
|
self.sr = 16000 # hubert输入采样率
|
|
|
|
self.window = 160 # 每帧点数
|
|
|
|
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
|
|
|
self.t_pad_tgt = tgt_sr * x_pad
|
|
|
|
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
|
|
|
self.t_center = self.sr * x_center # 查询切点位置
|
|
|
|
self.t_max = self.sr * x_max # 免查询时长阈值
|
|
|
|
self.device = device
|
|
|
|
self.is_half = is_half
|
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
def get_f0(self, audio, p_len, f0_up_key, f0_method, silence_front=0):
|
2023-04-19 01:57:19 +03:00
|
|
|
n_frames = int(len(audio) // self.window) + 1
|
|
|
|
start_frame = int(silence_front * self.sr / self.window)
|
|
|
|
real_silence_front = start_frame * self.window / self.sr
|
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
silence_front_offset = int(np.round(real_silence_front * self.sr))
|
|
|
|
audio = audio[silence_front_offset:]
|
2023-04-19 01:57:19 +03:00
|
|
|
|
2023-04-07 22:56:32 +03:00
|
|
|
time_step = self.window / self.sr * 1000
|
2023-04-07 23:17:57 +03:00
|
|
|
f0_min = 50
|
|
|
|
f0_max = 1100
|
2023-04-07 22:56:32 +03:00
|
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
2023-04-28 03:47:39 +03:00
|
|
|
if f0_method == "pm":
|
|
|
|
f0 = (
|
|
|
|
parselmouth.Sound(audio, self.sr)
|
|
|
|
.to_pitch_ac(
|
|
|
|
time_step=time_step / 1000,
|
|
|
|
voicing_threshold=0.6,
|
|
|
|
pitch_floor=f0_min,
|
|
|
|
pitch_ceiling=f0_max,
|
|
|
|
)
|
|
|
|
.selected_array["frequency"]
|
|
|
|
)
|
2023-04-07 22:56:32 +03:00
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
2023-04-28 03:47:39 +03:00
|
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
|
|
f0 = np.pad(
|
|
|
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
|
|
|
)
|
|
|
|
elif f0_method == "harvest":
|
2023-04-07 22:56:32 +03:00
|
|
|
f0, t = pyworld.harvest(
|
2023-04-19 01:57:19 +03:00
|
|
|
audio.astype(np.double),
|
2023-04-07 22:56:32 +03:00
|
|
|
fs=self.sr,
|
|
|
|
f0_ceil=f0_max,
|
|
|
|
frame_period=10,
|
|
|
|
)
|
2023-04-19 01:57:19 +03:00
|
|
|
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
2023-04-07 22:56:32 +03:00
|
|
|
f0 = signal.medfilt(f0, 3)
|
2023-04-19 01:57:19 +03:00
|
|
|
|
2023-04-28 03:47:39 +03:00
|
|
|
f0 = np.pad(
|
|
|
|
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
|
|
|
)
|
2023-04-21 09:48:12 +03:00
|
|
|
else:
|
|
|
|
print("[Voice Changer] invalid f0 detector, use pm.", f0_method)
|
2023-04-28 03:47:39 +03:00
|
|
|
f0 = (
|
|
|
|
parselmouth.Sound(audio, self.sr)
|
|
|
|
.to_pitch_ac(
|
|
|
|
time_step=time_step / 1000,
|
|
|
|
voicing_threshold=0.6,
|
|
|
|
pitch_floor=f0_min,
|
|
|
|
pitch_ceiling=f0_max,
|
|
|
|
)
|
|
|
|
.selected_array["frequency"]
|
|
|
|
)
|
2023-04-21 09:48:12 +03:00
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
2023-04-28 03:47:39 +03:00
|
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
|
|
f0 = np.pad(
|
|
|
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
|
|
|
)
|
2023-04-19 01:57:19 +03:00
|
|
|
|
2023-04-07 22:56:32 +03:00
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
|
|
f0bak = f0.copy()
|
|
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
2023-04-28 03:47:39 +03:00
|
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
|
|
f0_mel_max - f0_mel_min
|
|
|
|
) + 1
|
2023-04-07 22:56:32 +03:00
|
|
|
f0_mel[f0_mel <= 1] = 1
|
|
|
|
f0_mel[f0_mel > 255] = 255
|
|
|
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
|
|
return f0_coarse, f0bak # 1-0
|
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
def pipeline(
|
2023-04-28 03:47:39 +03:00
|
|
|
self,
|
2023-04-28 04:30:07 +03:00
|
|
|
embedder,
|
2023-04-28 03:47:39 +03:00
|
|
|
model,
|
|
|
|
sid,
|
2023-04-28 04:30:07 +03:00
|
|
|
audio,
|
|
|
|
f0_up_key,
|
|
|
|
f0_method,
|
2023-04-28 03:47:39 +03:00
|
|
|
index,
|
|
|
|
big_npy,
|
|
|
|
index_rate,
|
2023-04-28 04:30:07 +03:00
|
|
|
if_f0,
|
|
|
|
silence_front=0,
|
2023-04-28 03:47:39 +03:00
|
|
|
embChannels=256,
|
2023-04-28 04:30:07 +03:00
|
|
|
):
|
|
|
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
|
|
|
p_len = audio_pad.shape[0] // self.window
|
|
|
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
|
|
|
|
|
|
|
# ピッチ検出
|
|
|
|
pitch, pitchf = None, None
|
|
|
|
if if_f0 == 1:
|
|
|
|
pitch, pitchf = self.get_f0(
|
|
|
|
audio_pad,
|
|
|
|
p_len,
|
|
|
|
f0_up_key,
|
|
|
|
f0_method,
|
|
|
|
silence_front=silence_front,
|
|
|
|
)
|
|
|
|
pitch = pitch[:p_len]
|
|
|
|
pitchf = pitchf[:p_len]
|
|
|
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
|
|
|
pitchf = torch.tensor(
|
|
|
|
pitchf, device=self.device, dtype=torch.float
|
|
|
|
).unsqueeze(0)
|
|
|
|
|
|
|
|
# tensor
|
|
|
|
feats = torch.from_numpy(audio_pad)
|
|
|
|
if self.is_half is True:
|
2023-04-07 22:56:32 +03:00
|
|
|
feats = feats.half()
|
|
|
|
else:
|
|
|
|
feats = feats.float()
|
|
|
|
if feats.dim() == 2: # double channels
|
|
|
|
feats = feats.mean(-1)
|
|
|
|
assert feats.dim() == 1, feats.dim()
|
|
|
|
feats = feats.view(1, -1)
|
2023-04-28 04:30:07 +03:00
|
|
|
|
|
|
|
# embedding
|
2023-04-07 22:56:32 +03:00
|
|
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
2023-04-23 23:54:36 +03:00
|
|
|
if embChannels == 256:
|
2023-04-23 00:19:48 +03:00
|
|
|
inputs = {
|
|
|
|
"source": feats.to(self.device),
|
|
|
|
"padding_mask": padding_mask,
|
|
|
|
"output_layer": 9, # layer 9
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
inputs = {
|
|
|
|
"source": feats.to(self.device),
|
|
|
|
"padding_mask": padding_mask,
|
|
|
|
}
|
2023-04-07 22:56:32 +03:00
|
|
|
|
|
|
|
with torch.no_grad():
|
2023-04-28 04:30:07 +03:00
|
|
|
logits = embedder.extract_features(**inputs)
|
2023-04-23 23:54:36 +03:00
|
|
|
if embChannels == 256:
|
2023-04-28 04:30:07 +03:00
|
|
|
feats = embedder.final_proj(logits[0])
|
2023-04-23 00:19:48 +03:00
|
|
|
else:
|
|
|
|
feats = logits[0]
|
2023-04-07 22:56:32 +03:00
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
# Index - feature抽出
|
2023-04-28 03:47:39 +03:00
|
|
|
if (
|
|
|
|
isinstance(index, type(None)) is False
|
|
|
|
and isinstance(big_npy, type(None)) is False
|
|
|
|
and index_rate != 0
|
|
|
|
):
|
2023-04-07 22:56:32 +03:00
|
|
|
npy = feats[0].cpu().numpy()
|
2023-04-28 03:47:39 +03:00
|
|
|
if self.is_half is True:
|
2023-04-07 22:56:32 +03:00
|
|
|
npy = npy.astype("float32")
|
|
|
|
D, I = index.search(npy, 1)
|
|
|
|
npy = big_npy[I.squeeze()]
|
2023-04-28 03:47:39 +03:00
|
|
|
if self.is_half is True:
|
2023-04-07 22:56:32 +03:00
|
|
|
npy = npy.astype("float16")
|
2023-04-28 03:47:39 +03:00
|
|
|
|
|
|
|
feats = (
|
|
|
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
|
|
|
+ (1 - index_rate) * feats
|
|
|
|
)
|
2023-04-07 22:56:32 +03:00
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
#
|
2023-04-07 22:56:32 +03:00
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
2023-04-07 23:34:26 +03:00
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
# ピッチ抽出
|
|
|
|
p_len = audio_pad.shape[0] // self.window
|
2023-04-28 03:47:39 +03:00
|
|
|
if feats.shape[1] < p_len:
|
2023-04-07 22:56:32 +03:00
|
|
|
p_len = feats.shape[1]
|
2023-04-28 03:47:39 +03:00
|
|
|
if pitch is not None and pitchf is not None:
|
2023-04-07 22:56:32 +03:00
|
|
|
pitch = pitch[:, :p_len]
|
|
|
|
pitchf = pitchf[:, :p_len]
|
|
|
|
p_len = torch.tensor([p_len], device=self.device).long()
|
2023-04-07 23:34:26 +03:00
|
|
|
|
2023-04-28 04:30:07 +03:00
|
|
|
# 推論実行
|
2023-04-07 22:56:32 +03:00
|
|
|
with torch.no_grad():
|
2023-04-28 03:47:39 +03:00
|
|
|
if pitch is not None:
|
|
|
|
audio1 = (
|
2023-04-28 04:30:07 +03:00
|
|
|
(model.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
2023-04-28 03:47:39 +03:00
|
|
|
.data.cpu()
|
|
|
|
.float()
|
|
|
|
.numpy()
|
|
|
|
.astype(np.int16)
|
|
|
|
)
|
2023-04-23 00:19:48 +03:00
|
|
|
else:
|
2023-04-28 04:30:07 +03:00
|
|
|
if hasattr(model, "infer_pitchless"):
|
2023-04-28 03:47:39 +03:00
|
|
|
audio1 = (
|
2023-04-28 04:30:07 +03:00
|
|
|
(model.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
2023-04-28 03:47:39 +03:00
|
|
|
.data.cpu()
|
|
|
|
.float()
|
|
|
|
.numpy()
|
|
|
|
.astype(np.int16)
|
|
|
|
)
|
2023-04-23 23:54:36 +03:00
|
|
|
else:
|
2023-04-28 03:47:39 +03:00
|
|
|
audio1 = (
|
2023-04-28 04:30:07 +03:00
|
|
|
(model.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
2023-04-28 03:47:39 +03:00
|
|
|
.data.cpu()
|
|
|
|
.float()
|
|
|
|
.numpy()
|
|
|
|
.astype(np.int16)
|
|
|
|
)
|
2023-04-07 23:34:26 +03:00
|
|
|
|
2023-04-07 22:56:32 +03:00
|
|
|
del feats, p_len, padding_mask
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
2023-04-28 03:47:39 +03:00
|
|
|
if self.t_pad_tgt != 0:
|
|
|
|
offset = self.t_pad_tgt
|
|
|
|
end = -1 * self.t_pad_tgt
|
2023-04-28 04:30:07 +03:00
|
|
|
audio1 = audio1[offset:end]
|
2023-04-07 23:17:57 +03:00
|
|
|
|
2023-04-07 22:56:32 +03:00
|
|
|
del pitch, pitchf, sid
|
|
|
|
torch.cuda.empty_cache()
|
2023-04-28 04:30:07 +03:00
|
|
|
return audio1
|