voice-changer/server/voice_changer/RVC/inferencer/models.py

218 lines
9.0 KiB
Python
Raw Normal View History

2023-05-02 14:57:12 +03:00
import math
import torch
from torch import nn
2023-06-23 16:34:09 +03:00
from .rvc_models.infer_pack.models import GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock, Generator
# from infer_pack import commons, attentions
from .rvc_models.infer_pack.commons import sequence_mask, rand_slice_segments, slice_segments2
from .rvc_models.infer_pack.attentions import Encoder
2023-05-02 14:57:12 +03:00
class TextEncoder(nn.Module):
def __init__(
self,
out_channels,
hidden_channels,
filter_channels,
emb_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
f0=True,
):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.emb_channels = emb_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
if f0 is True:
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
2023-06-23 16:34:09 +03:00
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
2023-05-02 14:57:12 +03:00
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, phone, pitch, lengths):
if pitch is None:
x = self.emb_phone(phone)
else:
x = self.emb_phone(phone) + self.emb_pitch(pitch)
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
x = self.lrelu(x)
x = torch.transpose(x, 1, -1) # [b, h, t]
2023-06-23 16:34:09 +03:00
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
2023-05-02 14:57:12 +03:00
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class SynthesizerTrnMsNSFsid(nn.Module):
2023-06-23 16:34:09 +03:00
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr, **kwargs):
2023-05-02 14:57:12 +03:00
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.emb_channels = emb_channels
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
emb_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = GeneratorNSF(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
sr=sr,
is_half=kwargs["is_half"],
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
2023-06-23 16:34:09 +03:00
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
2023-05-02 14:57:12 +03:00
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
2023-06-23 16:34:09 +03:00
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds): # 这里ds是id[bs,1]
2023-05-02 14:57:12 +03:00
# print(1,pitch.shape)#[bs,t]
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
2023-06-23 16:34:09 +03:00
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
2023-05-02 14:57:12 +03:00
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
2023-06-23 16:34:09 +03:00
pitchf = slice_segments2(pitchf, ids_slice, self.segment_size)
2023-05-02 14:57:12 +03:00
# print(-2,pitchf.shape,z_slice.shape)
o = self.dec(z_slice, pitchf, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
2023-07-01 06:06:14 +03:00
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None, convert_length=None):
2023-05-02 14:57:12 +03:00
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
z = self.flow(z_p, x_mask, g=g, reverse=True)
2023-07-01 06:06:14 +03:00
o = self.dec.infer_realtime((z * x_mask)[:, :, :max_len], nsff0, g=g, convert_length=convert_length)
2023-05-02 14:57:12 +03:00
return o, x_mask, (z, z_p, m_p, logs_p)
class SynthesizerTrnMsNSFsidNono(nn.Module):
2023-06-23 16:34:09 +03:00
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr=None, **kwargs):
2023-05-02 14:57:12 +03:00
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.emb_channels = emb_channels
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
emb_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
f0=False,
)
self.dec = Generator(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
2023-06-23 16:34:09 +03:00
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
2023-05-02 14:57:12 +03:00
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id[bs,1]
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
2023-06-23 16:34:09 +03:00
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
2023-05-02 14:57:12 +03:00
o = self.dec(z_slice, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
2023-07-01 10:45:25 +03:00
def infer(self, phone, phone_lengths, sid, max_len=None, convert_length=None):
2023-05-02 14:57:12 +03:00
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
z = self.flow(z_p, x_mask, g=g, reverse=True)
2023-07-01 10:45:25 +03:00
o = self.dec.infer_realtime((z * x_mask)[:, :, :max_len], g=g, convert_length=convert_length)
2023-05-02 14:57:12 +03:00
return o, x_mask, (z, z_p, m_p, logs_p)