2023-03-10 19:56:10 +03:00
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
if sys.platform.startswith('darwin'):
|
|
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
|
|
if len(baseDir) != 1:
|
|
|
|
print("baseDir should be only one ", baseDir)
|
|
|
|
sys.exit()
|
|
|
|
modulePath = os.path.join(baseDir[0], "so-vits-svc-40v2")
|
|
|
|
sys.path.append(modulePath)
|
|
|
|
else:
|
|
|
|
sys.path.append("so-vits-svc-40v2")
|
|
|
|
|
|
|
|
import io
|
|
|
|
from dataclasses import dataclass, asdict
|
|
|
|
from functools import reduce
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import onnxruntime
|
|
|
|
import pyworld as pw
|
|
|
|
|
|
|
|
from models import SynthesizerTrn
|
|
|
|
import utils
|
|
|
|
from fairseq import checkpoint_utils
|
|
|
|
import librosa
|
|
|
|
from inference import infer_tool
|
|
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class SoVitsSvc40v2Settings():
|
|
|
|
gpu: int = 0
|
|
|
|
srcId: int = 0
|
|
|
|
dstId: int = 101
|
|
|
|
|
|
|
|
f0Factor: float = 1.0
|
|
|
|
f0Detector: str = "dio" # dio or harvest
|
|
|
|
|
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
|
|
|
pyTorchModelFile: str = ""
|
|
|
|
onnxModelFile: str = ""
|
|
|
|
configFile: str = ""
|
|
|
|
|
|
|
|
# ↓mutableな物だけ列挙
|
|
|
|
intData = ["gpu", "srcId", "dstId"]
|
|
|
|
floatData = ["f0Factor"]
|
|
|
|
strData = ["framework", "f0Detector"]
|
|
|
|
|
|
|
|
|
|
|
|
class SoVitsSvc40v2:
|
|
|
|
def __init__(self):
|
|
|
|
self.settings = SoVitsSvc40v2Settings()
|
|
|
|
self.net_g = None
|
|
|
|
self.onnx_session = None
|
|
|
|
|
|
|
|
self.raw_path = io.BytesIO()
|
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
self.prevVol = 0
|
|
|
|
|
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
|
|
|
self.settings.configFile = config
|
|
|
|
self.hps = utils.get_hparams_from_file(config)
|
|
|
|
|
|
|
|
# hubert model
|
|
|
|
print("loading hubert model")
|
|
|
|
vec_path = "hubert/checkpoint_best_legacy_500.pt"
|
|
|
|
print("load model(s) from {}".format(vec_path))
|
|
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
|
|
[vec_path],
|
|
|
|
suffix="",
|
|
|
|
)
|
|
|
|
model = models[0]
|
|
|
|
model.eval()
|
|
|
|
self.hubert_model = utils.get_hubert_model().cpu()
|
|
|
|
|
|
|
|
if pyTorch_model_file != None:
|
|
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
|
|
if onnx_model_file:
|
|
|
|
self.settings.onnxModelFile = onnx_model_file
|
|
|
|
|
|
|
|
# PyTorchモデル生成
|
|
|
|
if pyTorch_model_file != None:
|
|
|
|
self.net_g = SynthesizerTrn(
|
|
|
|
self.hps
|
|
|
|
)
|
|
|
|
self.net_g.eval()
|
|
|
|
utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
|
|
|
|
# # ONNXモデル生成
|
|
|
|
# if onnx_model_file != None:
|
|
|
|
# ort_options = onnxruntime.SessionOptions()
|
|
|
|
# ort_options.intra_op_num_threads = 8
|
|
|
|
# self.onnx_session = onnxruntime.InferenceSession(
|
|
|
|
# onnx_model_file,
|
|
|
|
# providers=providers
|
|
|
|
# )
|
|
|
|
return self.get_info()
|
|
|
|
|
|
|
|
def update_setteings(self, key: str, val: any):
|
|
|
|
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
|
|
|
if val == "CUDAExecutionProvider":
|
|
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
|
|
self.settings.gpu = 0
|
|
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
|
|
else:
|
|
|
|
self.onnx_session.set_providers(providers=[val])
|
|
|
|
elif key in self.settings.intData:
|
|
|
|
setattr(self.settings, key, int(val))
|
|
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
|
|
|
providers = self.onnx_session.get_providers()
|
|
|
|
print("Providers:", providers)
|
|
|
|
if "CUDAExecutionProvider" in providers:
|
|
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
|
|
|
elif key in self.settings.floatData:
|
|
|
|
setattr(self.settings, key, float(val))
|
|
|
|
elif key in self.settings.strData:
|
|
|
|
setattr(self.settings, key, str(val))
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
def get_info(self):
|
|
|
|
data = asdict(self.settings)
|
|
|
|
|
|
|
|
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
|
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
|
|
for f in files:
|
|
|
|
if data[f] != None and os.path.exists(data[f]):
|
|
|
|
data[f] = os.path.basename(data[f])
|
|
|
|
else:
|
|
|
|
data[f] = ""
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
def get_processing_sampling_rate(self):
|
|
|
|
return self.hps.data.sampling_rate
|
|
|
|
|
2023-03-10 22:02:40 +03:00
|
|
|
def get_processing_hop_length(self):
|
|
|
|
return self.hps.data.hop_length
|
|
|
|
|
2023-03-10 19:56:10 +03:00
|
|
|
def get_unit_f0(self, audio_buffer, tran):
|
|
|
|
wav_44k = audio_buffer
|
|
|
|
# f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
|
|
|
f0 = utils.compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
|
2023-03-10 21:59:03 +03:00
|
|
|
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
|
|
|
|
print(f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}")
|
2023-03-10 19:56:10 +03:00
|
|
|
|
|
|
|
f0, uv = utils.interpolate_f0(f0)
|
|
|
|
f0 = torch.FloatTensor(f0)
|
|
|
|
uv = torch.FloatTensor(uv)
|
|
|
|
f0 = f0 * 2 ** (tran / 12)
|
|
|
|
f0 = f0.unsqueeze(0)
|
|
|
|
uv = uv.unsqueeze(0)
|
|
|
|
|
|
|
|
# wav16k = librosa.resample(audio_buffer, orig_sr=24000, target_sr=16000)
|
|
|
|
wav16k = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000)
|
|
|
|
wav16k = torch.from_numpy(wav16k)
|
|
|
|
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
|
|
|
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
|
|
|
c = c.unsqueeze(0)
|
|
|
|
return c, f0, uv
|
|
|
|
|
|
|
|
def generate_input(self, newData: any, convertSize: int, cropRange):
|
|
|
|
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
|
|
|
|
|
|
if hasattr(self, "audio_buffer"):
|
|
|
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
|
|
|
else:
|
|
|
|
self.audio_buffer = newData
|
|
|
|
|
|
|
|
self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
|
|
|
|
|
|
|
|
crop = self.audio_buffer[cropRange[0]:cropRange[1]]
|
|
|
|
|
|
|
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
|
|
|
vol = max(rms, self.prevVol * 0.1)
|
|
|
|
self.prevVol = vol
|
2023-03-10 20:31:10 +03:00
|
|
|
# print(f" Crop:{crop.shape}, vol{vol}")
|
2023-03-10 19:56:10 +03:00
|
|
|
|
|
|
|
c, f0, uv = self.get_unit_f0(self.audio_buffer, 20)
|
|
|
|
return (c, f0, uv, convertSize, vol)
|
|
|
|
|
|
|
|
def _onnx_inference(self, data):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _pyTorch_inference(self, data):
|
|
|
|
if hasattr(self, "net_g") == False or self.net_g == None:
|
|
|
|
print("[Voice Changer] No pyTorch session.")
|
|
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
|
|
dev = torch.device("cpu")
|
|
|
|
else:
|
|
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
|
|
|
|
convertSize = data[3]
|
|
|
|
vol = data[4]
|
|
|
|
data = (data[0], data[1], data[2],)
|
|
|
|
|
2023-03-10 20:31:10 +03:00
|
|
|
# if vol < 0.00001:
|
|
|
|
# print("silcent")
|
|
|
|
# return np.zeros(convertSize).astype(np.int16)
|
|
|
|
# print(vol)
|
2023-03-10 19:56:10 +03:00
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
c, f0, uv = [x.to(dev)for x in data]
|
|
|
|
sid_target = torch.LongTensor([0]).to(dev)
|
|
|
|
self.net_g.to(dev)
|
|
|
|
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
|
|
|
|
audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=False, noice_scale=0.4)[0][0, 0].data.float()
|
|
|
|
audio1 = audio1 * self.hps.data.max_wav_value
|
|
|
|
|
|
|
|
result = audio1.float().cpu().numpy()
|
|
|
|
|
|
|
|
# result = infer_tool.pad_array(result, length)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def inference(self, data):
|
|
|
|
if self.settings.framework == "ONNX":
|
|
|
|
audio = self._onnx_inference(data)
|
|
|
|
else:
|
|
|
|
audio = self._pyTorch_inference(data)
|
|
|
|
return audio
|
|
|
|
|
|
|
|
def destroy(self):
|
|
|
|
del self.net_g
|
|
|
|
del self.onnx_session
|