2023-04-13 02:00:28 +03:00
|
|
|
from distutils.util import strtobool
|
2023-04-23 23:54:36 +03:00
|
|
|
import json
|
2023-04-13 02:00:28 +03:00
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from onnxsim import simplify
|
|
|
|
import onnx
|
|
|
|
|
2023-04-23 23:54:36 +03:00
|
|
|
from infer_pack.models import TextEncoder256, GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock, Generator
|
2023-04-13 02:00:28 +03:00
|
|
|
|
|
|
|
|
|
|
|
class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
spec_channels,
|
|
|
|
segment_size,
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
filter_channels,
|
|
|
|
n_heads,
|
|
|
|
n_layers,
|
|
|
|
kernel_size,
|
|
|
|
p_dropout,
|
|
|
|
resblock,
|
|
|
|
resblock_kernel_sizes,
|
|
|
|
resblock_dilation_sizes,
|
|
|
|
upsample_rates,
|
|
|
|
upsample_initial_channel,
|
|
|
|
upsample_kernel_sizes,
|
|
|
|
spk_embed_dim,
|
|
|
|
gin_channels,
|
|
|
|
sr,
|
|
|
|
**kwargs
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
if (type(sr) == type("strr")):
|
|
|
|
sr = sr2sr[sr]
|
|
|
|
self.spec_channels = spec_channels
|
|
|
|
self.inter_channels = inter_channels
|
|
|
|
self.hidden_channels = hidden_channels
|
|
|
|
self.filter_channels = filter_channels
|
|
|
|
self.n_heads = n_heads
|
|
|
|
self.n_layers = n_layers
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.p_dropout = p_dropout
|
|
|
|
self.resblock = resblock
|
|
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
|
|
self.upsample_rates = upsample_rates
|
|
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
|
|
self.segment_size = segment_size
|
|
|
|
self.gin_channels = gin_channels
|
|
|
|
# self.hop_length = hop_length#
|
|
|
|
self.spk_embed_dim = spk_embed_dim
|
|
|
|
self.enc_p = TextEncoder256(
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
filter_channels,
|
|
|
|
n_heads,
|
|
|
|
n_layers,
|
|
|
|
kernel_size,
|
|
|
|
p_dropout,
|
|
|
|
)
|
|
|
|
self.dec = GeneratorNSF(
|
|
|
|
inter_channels,
|
|
|
|
resblock,
|
|
|
|
resblock_kernel_sizes,
|
|
|
|
resblock_dilation_sizes,
|
|
|
|
upsample_rates,
|
|
|
|
upsample_initial_channel,
|
|
|
|
upsample_kernel_sizes,
|
|
|
|
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
|
|
|
)
|
|
|
|
self.enc_q = PosteriorEncoder(
|
|
|
|
spec_channels,
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
16,
|
|
|
|
gin_channels=gin_channels,
|
|
|
|
)
|
|
|
|
self.flow = ResidualCouplingBlock(
|
|
|
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
|
|
)
|
|
|
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
|
|
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
|
|
|
|
|
|
|
def forward(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
|
|
|
g = self.emb_g(sid).unsqueeze(-1)
|
|
|
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
|
|
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
|
|
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
|
|
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
|
|
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
|
|
|
|
|
|
|
|
2023-04-23 23:54:36 +03:00
|
|
|
class SynthesizerTrnMs256NSFsid_nono_ONNX(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
spec_channels,
|
|
|
|
segment_size,
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
filter_channels,
|
|
|
|
n_heads,
|
|
|
|
n_layers,
|
|
|
|
kernel_size,
|
|
|
|
p_dropout,
|
|
|
|
resblock,
|
|
|
|
resblock_kernel_sizes,
|
|
|
|
resblock_dilation_sizes,
|
|
|
|
upsample_rates,
|
|
|
|
upsample_initial_channel,
|
|
|
|
upsample_kernel_sizes,
|
|
|
|
spk_embed_dim,
|
|
|
|
gin_channels,
|
|
|
|
sr=None,
|
|
|
|
**kwargs
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
self.spec_channels = spec_channels
|
|
|
|
self.inter_channels = inter_channels
|
|
|
|
self.hidden_channels = hidden_channels
|
|
|
|
self.filter_channels = filter_channels
|
|
|
|
self.n_heads = n_heads
|
|
|
|
self.n_layers = n_layers
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.p_dropout = p_dropout
|
|
|
|
self.resblock = resblock
|
|
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
|
|
self.upsample_rates = upsample_rates
|
|
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
|
|
self.segment_size = segment_size
|
|
|
|
self.gin_channels = gin_channels
|
|
|
|
# self.hop_length = hop_length#
|
|
|
|
self.spk_embed_dim = spk_embed_dim
|
|
|
|
self.enc_p = TextEncoder256(
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
filter_channels,
|
|
|
|
n_heads,
|
|
|
|
n_layers,
|
|
|
|
kernel_size,
|
|
|
|
p_dropout, f0=False
|
|
|
|
)
|
|
|
|
self.dec = Generator(
|
|
|
|
inter_channels,
|
|
|
|
resblock,
|
|
|
|
resblock_kernel_sizes,
|
|
|
|
resblock_dilation_sizes,
|
|
|
|
upsample_rates,
|
|
|
|
upsample_initial_channel,
|
|
|
|
upsample_kernel_sizes,
|
|
|
|
gin_channels=gin_channels
|
|
|
|
)
|
|
|
|
self.enc_q = PosteriorEncoder(
|
|
|
|
spec_channels,
|
|
|
|
inter_channels,
|
|
|
|
hidden_channels,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
16,
|
|
|
|
gin_channels=gin_channels,
|
|
|
|
)
|
|
|
|
self.flow = ResidualCouplingBlock(
|
|
|
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
|
|
)
|
|
|
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
|
|
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
|
|
|
|
|
|
|
def forward(self, phone, phone_lengths, sid, max_len=None):
|
|
|
|
g = self.emb_g(sid).unsqueeze(-1)
|
|
|
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
|
|
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
|
|
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
|
|
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
|
|
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
|
|
|
|
|
|
|
|
|
|
|
def export2onnx(input_model, output_model, output_model_simple, is_half, metadata):
|
|
|
|
|
2023-04-13 02:00:28 +03:00
|
|
|
cpt = torch.load(input_model, map_location="cpu")
|
|
|
|
if is_half:
|
|
|
|
dev = torch.device("cuda", index=0)
|
|
|
|
else:
|
|
|
|
dev = torch.device("cpu")
|
|
|
|
|
2023-04-23 23:54:36 +03:00
|
|
|
if metadata["f0"] == True:
|
|
|
|
net_g_onnx = SynthesizerTrnMs256NSFsid_ONNX(*cpt["config"], is_half=is_half)
|
|
|
|
elif metadata["f0"] == False:
|
|
|
|
net_g_onnx = SynthesizerTrnMs256NSFsid_nono_ONNX(*cpt["config"])
|
|
|
|
|
2023-04-14 09:25:52 +03:00
|
|
|
net_g_onnx.eval().to(dev)
|
2023-04-13 02:00:28 +03:00
|
|
|
net_g_onnx.load_state_dict(cpt["weight"], strict=False)
|
|
|
|
if is_half:
|
|
|
|
net_g_onnx = net_g_onnx.half()
|
|
|
|
|
|
|
|
if is_half:
|
|
|
|
feats = torch.HalfTensor(1, 2192, 256).to(dev)
|
|
|
|
else:
|
|
|
|
feats = torch.FloatTensor(1, 2192, 256).to(dev)
|
|
|
|
p_len = torch.LongTensor([2192]).to(dev)
|
|
|
|
sid = torch.LongTensor([0]).to(dev)
|
|
|
|
|
2023-04-23 23:54:36 +03:00
|
|
|
if metadata["f0"] == True:
|
|
|
|
pitch = torch.zeros(1, 2192, dtype=torch.int64).to(dev)
|
|
|
|
pitchf = torch.FloatTensor(1, 2192).to(dev)
|
|
|
|
input_names = ["feats", "p_len", "pitch", "pitchf", "sid"]
|
|
|
|
inputs = (feats, p_len, pitch, pitchf, sid,)
|
|
|
|
|
|
|
|
else:
|
|
|
|
input_names = ["feats", "p_len", "sid"]
|
|
|
|
inputs = (feats, p_len, sid,)
|
|
|
|
|
2023-04-13 02:00:28 +03:00
|
|
|
output_names = ["audio", ]
|
|
|
|
|
|
|
|
torch.onnx.export(net_g_onnx,
|
2023-04-23 23:54:36 +03:00
|
|
|
inputs,
|
2023-04-13 02:00:28 +03:00
|
|
|
output_model,
|
|
|
|
dynamic_axes={
|
|
|
|
"feats": [1],
|
|
|
|
"pitch": [1],
|
|
|
|
"pitchf": [1],
|
|
|
|
},
|
|
|
|
do_constant_folding=False,
|
|
|
|
opset_version=17,
|
|
|
|
verbose=False,
|
|
|
|
input_names=input_names,
|
|
|
|
output_names=output_names)
|
|
|
|
|
|
|
|
model_onnx2 = onnx.load(output_model)
|
|
|
|
model_simp, check = simplify(model_onnx2)
|
2023-04-23 23:54:36 +03:00
|
|
|
meta = model_simp.metadata_props.add()
|
|
|
|
meta.key = "metadata"
|
|
|
|
meta.value = json.dumps(metadata)
|
2023-04-13 02:00:28 +03:00
|
|
|
onnx.save(model_simp, output_model_simple)
|