mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-03 08:43:57 +03:00
115 lines
4.2 KiB
Python
115 lines
4.2 KiB
Python
|
import os
|
||
|
|
||
|
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
||
|
import torch
|
||
|
import torch.utils.data
|
||
|
import numpy as np
|
||
|
import librosa
|
||
|
from librosa.filters import mel as librosa_mel_fn
|
||
|
import soundfile as sf
|
||
|
|
||
|
|
||
|
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
||
|
sampling_rate = None
|
||
|
try:
|
||
|
data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile.
|
||
|
except Exception as ex:
|
||
|
print(f"'{full_path}' failed to load.\nException:")
|
||
|
print(ex)
|
||
|
if return_empty_on_exception:
|
||
|
return [], sampling_rate or target_sr or 32000
|
||
|
else:
|
||
|
raise Exception(ex)
|
||
|
|
||
|
if len(data.shape) > 1:
|
||
|
data = data[:, 0]
|
||
|
assert len(data) > 2 # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
||
|
|
||
|
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
||
|
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
||
|
else: # if audio data is type fp32
|
||
|
max_mag = max(np.amax(data), -np.amin(data))
|
||
|
max_mag = (2**31) + 1 if max_mag > (2**15) else ((2**15) + 1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
||
|
|
||
|
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
|
||
|
|
||
|
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
||
|
return [], sampling_rate or target_sr or 32000
|
||
|
if target_sr is not None and sampling_rate != target_sr:
|
||
|
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
||
|
sampling_rate = target_sr
|
||
|
|
||
|
return data, sampling_rate
|
||
|
|
||
|
|
||
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||
|
|
||
|
|
||
|
def dynamic_range_decompression(x, C=1):
|
||
|
return np.exp(x) / C
|
||
|
|
||
|
|
||
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||
|
|
||
|
|
||
|
def dynamic_range_decompression_torch(x, C=1):
|
||
|
return torch.exp(x) / C
|
||
|
|
||
|
|
||
|
class STFT:
|
||
|
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
||
|
self.target_sr = sr
|
||
|
|
||
|
self.n_mels = n_mels
|
||
|
self.n_fft = n_fft
|
||
|
self.win_size = win_size
|
||
|
self.hop_length = hop_length
|
||
|
self.fmin = fmin
|
||
|
self.fmax = fmax
|
||
|
self.clip_val = clip_val
|
||
|
self.mel_basis = {}
|
||
|
self.hann_window = {}
|
||
|
|
||
|
def get_mel(self, y, center=False):
|
||
|
sampling_rate = self.target_sr
|
||
|
n_mels = self.n_mels
|
||
|
n_fft = self.n_fft
|
||
|
win_size = self.win_size
|
||
|
hop_length = self.hop_length
|
||
|
fmin = self.fmin
|
||
|
fmax = self.fmax
|
||
|
clip_val = self.clip_val
|
||
|
|
||
|
if torch.min(y) < -1.0:
|
||
|
print("min value is ", torch.min(y))
|
||
|
if torch.max(y) > 1.0:
|
||
|
print("max value is ", torch.max(y))
|
||
|
|
||
|
if fmax not in self.mel_basis:
|
||
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
||
|
self.mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||
|
self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
|
||
|
|
||
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode="reflect")
|
||
|
y = y.squeeze(1)
|
||
|
|
||
|
spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)], center=center, pad_mode="reflect", normalized=False, onesided=True)
|
||
|
# print(111,spec)
|
||
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||
|
# print(222,spec)
|
||
|
spec = torch.matmul(self.mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
||
|
# print(333,spec)
|
||
|
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
||
|
# print(444,spec)
|
||
|
return spec
|
||
|
|
||
|
def __call__(self, audiopath):
|
||
|
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
||
|
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
||
|
return spect
|
||
|
|
||
|
|
||
|
stft = STFT()
|