2023-05-02 14:57:12 +03:00
|
|
|
from const import EnumEmbedderTypes, EnumInferenceTypes
|
|
|
|
from voice_changer.RVC.ModelSlot import ModelSlot
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import onnxruntime
|
|
|
|
import json
|
2023-05-14 22:24:58 +03:00
|
|
|
import os
|
2023-05-02 14:57:12 +03:00
|
|
|
|
|
|
|
|
2023-05-14 22:24:58 +03:00
|
|
|
def generateModelSlot_(params):
|
2023-05-02 14:57:12 +03:00
|
|
|
modelSlot = ModelSlot()
|
2023-05-08 19:01:20 +03:00
|
|
|
|
|
|
|
modelSlot.modelFile = params["files"]["rvcModel"]
|
|
|
|
modelSlot.featureFile = (
|
|
|
|
params["files"]["rvcFeature"] if "rvcFeature" in params["files"] else None
|
|
|
|
)
|
|
|
|
modelSlot.indexFile = (
|
|
|
|
params["files"]["rvcIndex"] if "rvcIndex" in params["files"] else None
|
|
|
|
)
|
|
|
|
|
2023-05-02 14:57:12 +03:00
|
|
|
modelSlot.defaultTrans = params["trans"] if "trans" in params else 0
|
|
|
|
|
2023-05-08 19:01:20 +03:00
|
|
|
modelSlot.isONNX = modelSlot.modelFile.endswith(".onnx")
|
2023-05-02 14:57:12 +03:00
|
|
|
|
|
|
|
if modelSlot.isONNX:
|
2023-05-08 19:01:20 +03:00
|
|
|
_setInfoByONNX(modelSlot)
|
2023-05-02 14:57:12 +03:00
|
|
|
else:
|
2023-05-08 19:01:20 +03:00
|
|
|
_setInfoByPytorch(modelSlot)
|
2023-05-02 14:57:12 +03:00
|
|
|
return modelSlot
|
|
|
|
|
|
|
|
|
2023-05-14 22:24:58 +03:00
|
|
|
def generateModelSlot(slotDir: str):
|
|
|
|
modelSlot = ModelSlot()
|
|
|
|
if os.path.exists(slotDir) == False:
|
|
|
|
return modelSlot
|
|
|
|
paramFile = os.path.join(slotDir, "params.json")
|
|
|
|
with open(paramFile, "r") as f:
|
|
|
|
params = json.load(f)
|
|
|
|
|
|
|
|
modelSlot.modelFile = os.path.join(
|
|
|
|
slotDir, os.path.basename(params["files"]["rvcModel"])
|
|
|
|
)
|
|
|
|
if "rvcFeature" in params["files"]:
|
|
|
|
modelSlot.featureFile = os.path.join(
|
|
|
|
slotDir, os.path.basename(params["files"]["rvcFeature"])
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
modelSlot.featureFile = None
|
|
|
|
if "rvcIndex" in params["files"]:
|
|
|
|
modelSlot.indexFile = os.path.join(
|
|
|
|
slotDir, os.path.basename(params["files"]["rvcIndex"])
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
modelSlot.indexFile = None
|
|
|
|
|
|
|
|
modelSlot.defaultTrans = params["trans"] if "trans" in params else 0
|
|
|
|
|
|
|
|
modelSlot.isONNX = modelSlot.modelFile.endswith(".onnx")
|
|
|
|
|
|
|
|
if modelSlot.isONNX:
|
|
|
|
_setInfoByONNX(modelSlot)
|
|
|
|
else:
|
|
|
|
_setInfoByPytorch(modelSlot)
|
|
|
|
return modelSlot
|
|
|
|
|
|
|
|
|
2023-05-08 19:01:20 +03:00
|
|
|
def _setInfoByPytorch(slot: ModelSlot):
|
|
|
|
cpt = torch.load(slot.modelFile, map_location="cpu")
|
2023-05-02 14:57:12 +03:00
|
|
|
config_len = len(cpt["config"])
|
|
|
|
if config_len == 18:
|
|
|
|
slot.f0 = True if cpt["f0"] == 1 else False
|
|
|
|
slot.modelType = (
|
|
|
|
EnumInferenceTypes.pyTorchRVC
|
|
|
|
if slot.f0
|
|
|
|
else EnumInferenceTypes.pyTorchRVCNono
|
|
|
|
)
|
|
|
|
slot.embChannels = 256
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert
|
|
|
|
else:
|
|
|
|
slot.f0 = True if cpt["f0"] == 1 else False
|
|
|
|
slot.modelType = (
|
|
|
|
EnumInferenceTypes.pyTorchWebUI
|
|
|
|
if slot.f0
|
|
|
|
else EnumInferenceTypes.pyTorchWebUINono
|
|
|
|
)
|
|
|
|
slot.embChannels = cpt["config"][17]
|
|
|
|
slot.embedder = cpt["embedder_name"]
|
|
|
|
if slot.embedder.endswith("768"):
|
|
|
|
slot.embedder = slot.embedder[:-3]
|
|
|
|
|
2023-05-03 07:14:00 +03:00
|
|
|
if slot.embedder == EnumEmbedderTypes.hubert.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert
|
|
|
|
elif slot.embedder == EnumEmbedderTypes.contentvec.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.contentvec
|
|
|
|
elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert_jp
|
|
|
|
else:
|
|
|
|
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
|
|
|
|
|
2023-05-02 14:57:12 +03:00
|
|
|
slot.samplingRate = cpt["config"][-1]
|
|
|
|
|
|
|
|
del cpt
|
|
|
|
|
|
|
|
|
2023-05-08 19:01:20 +03:00
|
|
|
def _setInfoByONNX(slot: ModelSlot):
|
2023-05-02 14:57:12 +03:00
|
|
|
tmp_onnx_session = onnxruntime.InferenceSession(
|
2023-05-08 19:01:20 +03:00
|
|
|
slot.modelFile, providers=["CPUExecutionProvider"]
|
2023-05-02 14:57:12 +03:00
|
|
|
)
|
|
|
|
modelmeta = tmp_onnx_session.get_modelmeta()
|
|
|
|
try:
|
|
|
|
metadata = json.loads(modelmeta.custom_metadata_map["metadata"])
|
|
|
|
|
2023-05-03 11:12:40 +03:00
|
|
|
# slot.modelType = metadata["modelType"]
|
2023-05-02 14:57:12 +03:00
|
|
|
slot.embChannels = metadata["embChannels"]
|
2023-05-03 07:14:00 +03:00
|
|
|
|
|
|
|
if "embedder" not in metadata:
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert
|
|
|
|
elif metadata["embedder"] == EnumEmbedderTypes.hubert.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert
|
|
|
|
elif metadata["embedder"] == EnumEmbedderTypes.contentvec.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.contentvec
|
|
|
|
elif metadata["embedder"] == EnumEmbedderTypes.hubert_jp.value:
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert_jp
|
|
|
|
else:
|
|
|
|
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
|
|
|
|
|
2023-05-02 14:57:12 +03:00
|
|
|
slot.f0 = metadata["f0"]
|
|
|
|
slot.modelType = (
|
|
|
|
EnumInferenceTypes.onnxRVC if slot.f0 else EnumInferenceTypes.onnxRVCNono
|
|
|
|
)
|
|
|
|
slot.samplingRate = metadata["samplingRate"]
|
|
|
|
slot.deprecated = False
|
|
|
|
|
2023-05-03 07:14:00 +03:00
|
|
|
except Exception as e:
|
2023-05-02 14:57:12 +03:00
|
|
|
slot.modelType = EnumInferenceTypes.onnxRVC
|
|
|
|
slot.embChannels = 256
|
|
|
|
slot.embedder = EnumEmbedderTypes.hubert
|
|
|
|
slot.f0 = True
|
|
|
|
slot.samplingRate = 48000
|
|
|
|
slot.deprecated = True
|
|
|
|
|
2023-05-03 07:14:00 +03:00
|
|
|
print("[Voice Changer] setInfoByONNX", e)
|
2023-05-02 14:57:12 +03:00
|
|
|
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
|
|
|
|
print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.")
|
|
|
|
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
|
|
|
|
|
|
|
|
del tmp_onnx_session
|