voice-changer/server/voice_changer/VoiceChanger.py

228 lines
12 KiB
Python
Raw Normal View History

2022-12-31 10:08:14 +03:00
import torch
2023-01-04 20:28:36 +03:00
import math
2022-12-31 10:08:14 +03:00
from scipy.io.wavfile import write, read
import numpy as np
import traceback
import utils
import commons
from models import SynthesizerTrn
from text.symbols import symbols
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
from mel_processing import spectrogram_torch
from text import text_to_sequence, cleaned_text_to_sequence
2023-01-07 14:07:39 +03:00
import onnxruntime
2022-12-31 10:08:14 +03:00
2023-01-07 14:07:39 +03:00
# providers = ['OpenVINOExecutionProvider',"CUDAExecutionProvider","DmlExecutionProvider", "CPUExecutionProvider"]
providers = ['OpenVINOExecutionProvider',"CUDAExecutionProvider","DmlExecutionProvider"]
2022-12-31 10:08:14 +03:00
class VoiceChanger():
2023-01-07 14:07:39 +03:00
# def __init__(self, config, model, onnx_model=None, providers=["CPUExecutionProvider"]):
def __init__(self, config, model, onnx_model=None):
2022-12-31 10:08:14 +03:00
self.hps = utils.get_hparams_from_file(config)
self.net_g = SynthesizerTrn(
len(symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model)
self.net_g.eval()
self.gpu_num = torch.cuda.device_count()
utils.load_checkpoint(model, self.net_g, None)
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
text_norm = commons.intersperse(text_norm, 0)
self.text_norm = torch.LongTensor(text_norm)
self.audio_buffer = torch.zeros(1, 0)
self.prev_audio = np.zeros(1)
self.mps_enabled = getattr(
torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
2023-01-04 20:28:36 +03:00
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
self.crossFadeOffsetRate = 0
self.crossFadeEndRate = 0
self.unpackedData_length = 0
2022-12-31 10:08:14 +03:00
2023-01-07 14:07:39 +03:00
if onnx_model != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
# ort_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
# ort_options.execution_mode = onnxruntime.ExecutionMode.ORT_PARALLEL
# ort_options.inter_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model,
# sess_options=ort_options,
providers=providers,
)
print("ONNX_MDEOL!1", self.onnx_session.get_providers())
2022-12-31 10:08:14 +03:00
def destroy(self):
del self.net_g
2023-01-07 14:07:39 +03:00
del self.onnx_session
2022-12-31 10:08:14 +03:00
2023-01-04 20:28:36 +03:00
def on_request(self, gpu, srcId, dstId, timestamp, convertChunkNum, crossFadeLowerValue, crossFadeOffsetRate, crossFadeEndRate, unpackedData):
# convertSize = unpackedData.shape[0] + (convertChunkNum * 128) # 128sample/1chunk
convertSize = convertChunkNum * 128 # 128sample/1chunk
# print("on_request", unpackedData.shape[0], convertChunkNum* 128 )
if unpackedData.shape[0] * 2 > convertSize:
# print(f"Convert sample_num = {128 * convertChunkNum} (128 * {convertChunkNum}) is less than input sample_num x2 ({unpackedData.shape[0]}) x2. Chage to {unpackedData.shape[0] * 2} samples")
convertSize = unpackedData.shape[0] * 2
2023-01-07 14:07:39 +03:00
print("convert Size", convertChunkNum, convertSize)
2023-01-04 20:28:36 +03:00
if self.crossFadeOffsetRate != crossFadeOffsetRate or self.crossFadeEndRate != crossFadeEndRate or self.unpackedData_length != unpackedData.shape[0]:
self.crossFadeOffsetRate = crossFadeOffsetRate
self.crossFadeEndRate = crossFadeEndRate
self.unpackedData_length = unpackedData.shape[0]
cf_offset = int(unpackedData.shape[0] * crossFadeOffsetRate)
cf_end = int(unpackedData.shape[0] * crossFadeEndRate)
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1-percent) * 0.5 * np.pi) ** 2
2023-01-07 14:07:39 +03:00
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(unpackedData.shape[0]-cf_offset-len(np_prev_strength))])
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(unpackedData.shape[0]-cf_offset-len(np_cur_strength))])
2023-01-04 20:28:36 +03:00
2023-01-07 14:07:39 +03:00
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
2023-01-04 20:28:36 +03:00
torch.set_printoptions(edgeitems=2100)
print("Generated Strengths")
2023-01-05 16:08:26 +03:00
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
# print("Prev", self.prev_strength)
# print("Cur", self.cur_strength)
2023-01-04 20:28:36 +03:00
# ひとつ前の結果とサイズが変わるため、記録は消去する。
2023-01-05 15:51:06 +03:00
if hasattr(self, 'prev_audio1') == True:
delattr(self,"prev_audio1")
2023-01-04 20:28:36 +03:00
try:
# 今回変換するデータをテンソルとして整形する
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
audio_norm = audio / self.hps.data.max_wav_value # normalize
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
audio_norm = self.audio_buffer[:, -convertSize:] # 変換対象の部分だけ抽出
self.audio_buffer = audio_norm
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
sid = torch.LongTensor([int(srcId)])
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
# if gpu < 0 or (self.gpu_num == 0 and not self.mps_enabled):
2023-01-07 14:07:39 +03:00
if gpu == -2 and hasattr(self, 'onnx_session') == True:
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
sid_tgt1 = torch.LongTensor([dstId])
# if spec.size()[2] >= 8:
audio1 = self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy()
})[0][0,0] * self.hps.data.max_wav_value
if hasattr(self, 'np_prev_audio1') == True:
prev = self.np_prev_audio1[-1*unpackedData.shape[0]:]
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# print(prev.shape, self.np_prev_strength.shape, cur.shape, self.np_cur_strength.shape)
powered_prev = prev * self.np_prev_strength
powered_cur = cur * self.np_cur_strength
result = powered_prev + powered_cur
#result = prev * self.np_prev_strength + cur * self.np_cur_strength
else:
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
result = cur
self.np_prev_audio1 = audio1
elif gpu < 0 or self.gpu_num == 0:
2023-01-04 20:28:36 +03:00
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
x.cpu() for x in data]
sid_tgt1 = torch.LongTensor([dstId]).cpu()
2023-01-05 12:56:02 +03:00
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value)
if self.prev_strength.device != torch.device('cpu'):
print(f"prev_strength move from {self.prev_strength.device} to cpu")
self.prev_strength = self.prev_strength.cpu()
if self.cur_strength.device != torch.device('cpu'):
print(f"cur_strength move from {self.cur_strength.device} to cpu")
self.cur_strength = self.cur_strength.cpu()
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'):
prev = self.prev_audio1[-1*unpackedData.shape[0]:]
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
result = prev * self.prev_strength + cur * self.cur_strength
else:
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
result = cur
self.prev_audio1 = audio1
result = result.cpu().float().numpy()
2023-01-04 20:28:36 +03:00
# elif self.mps_enabled == True: # MPS doesnt support aten::weight_norm_interface, and PYTORCH_ENABLE_MPS_FALLBACK=1 cause a big dely.
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
# x.to("mps") for x in data]
# sid_tgt1 = torch.LongTensor([dstId]).to("mps")
# audio1 = (self.net_g.to("mps").voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[
# 0][0, 0].data * self.hps.data.max_wav_value).cpu().float().numpy()
else:
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
# audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value).cpu().float().numpy()
audio1 = self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value
if self.prev_strength.device != torch.device('cuda', gpu):
print(f"prev_strength move from {self.prev_strength.device} to gpu{gpu}")
self.prev_strength = self.prev_strength.cuda(gpu)
if self.cur_strength.device != torch.device('cuda', gpu):
print(f"cur_strength move from {self.cur_strength.device} to gpu{gpu}")
self.cur_strength = self.cur_strength.cuda(gpu)
2023-01-05 12:56:02 +03:00
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', gpu):
2023-01-04 20:28:36 +03:00
prev = self.prev_audio1[-1*unpackedData.shape[0]:]
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
result = prev * self.prev_strength + cur * self.cur_strength
2023-01-05 16:08:26 +03:00
# print("merging...", prev.shape, cur.shape)
2023-01-04 20:28:36 +03:00
else:
cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
result = cur
2023-01-05 16:08:26 +03:00
# print("no merging...", cur.shape)
2023-01-04 20:28:36 +03:00
self.prev_audio1 = audio1
#print(result)
result = result.cpu().float().numpy()
except Exception as e:
2023-01-07 14:07:39 +03:00
print("VC PROCESSING!!!! EXCEPTION!!!", e)
2023-01-04 20:28:36 +03:00
print(traceback.format_exc())
2023-01-07 14:07:39 +03:00
del self.np_prev_audio1
del self.prev_audio1
2023-01-04 20:28:36 +03:00
result = result.astype(np.int16)
2023-01-05 16:08:26 +03:00
# print("on_request result size:",result.shape)
2023-01-04 20:28:36 +03:00
return result