mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-26 06:55:02 +03:00
28 lines
788 B
Python
28 lines
788 B
Python
|
import torch
|
||
|
|
||
|
|
||
|
def init_weights(m, mean=0.0, std=0.01):
|
||
|
classname = m.__class__.__name__
|
||
|
if classname.find("Conv") != -1:
|
||
|
m.weight.data.normal_(mean, std)
|
||
|
|
||
|
|
||
|
def get_padding(kernel_size, dilation=1):
|
||
|
return int((kernel_size * dilation - dilation) / 2)
|
||
|
|
||
|
|
||
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||
|
n_channels_int = n_channels[0]
|
||
|
in_act = input_a + input_b
|
||
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||
|
acts = t_act * s_act
|
||
|
return acts
|
||
|
|
||
|
|
||
|
def sequence_mask(length, max_length=None):
|
||
|
if max_length is None:
|
||
|
max_length = length.max()
|
||
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||
|
return x.unsqueeze(0) < length.unsqueeze(1)
|