voice-changer/server/voice_changer/DiffusionSVC/pipeline/Pipeline.py

209 lines
8.0 KiB
Python
Raw Normal View History

2023-07-12 18:59:48 +03:00
from typing import Any
import torch
import torch.nn.functional as F
from torch.cuda.amp import autocast
from Exceptions import (
DeviceCannotSupportHalfPrecisionException,
DeviceChangingException,
HalfPrecisionChangingException,
NotEnoughDataExtimateF0,
)
2023-07-13 21:33:04 +03:00
from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer
2023-07-12 18:59:48 +03:00
from voice_changer.RVC.embedder.Embedder import Embedder
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
2023-07-13 21:33:04 +03:00
from voice_changer.common.VolumeExtractor import VolumeExtractor
2023-07-12 18:59:48 +03:00
class Pipeline(object):
embedder: Embedder
inferencer: Inferencer
pitchExtractor: PitchExtractor
index: Any | None
big_npy: Any | None
# feature: Any | None
targetSR: int
device: torch.device
isHalf: bool
def __init__(
self,
embedder: Embedder,
inferencer: Inferencer,
pitchExtractor: PitchExtractor,
2023-07-13 21:33:04 +03:00
# index: Any | None,
2023-07-12 18:59:48 +03:00
targetSR,
device,
isHalf,
):
2023-07-13 22:28:03 +03:00
self.inferencer = inferencer
inferencer_block_size, inferencer_sampling_rate = inferencer.getConfig()
self.hop_size = inferencer_block_size * 16000 / inferencer_sampling_rate # 16000はオーディオのサンプルレート。この時点で16Kになっている。
self.inferencer_block_size = inferencer_block_size
self.inferencer_sampling_rate = inferencer_sampling_rate
2023-07-13 21:33:04 +03:00
2023-07-13 22:28:03 +03:00
self.volumeExtractor = VolumeExtractor(self.hop_size)
2023-07-12 18:59:48 +03:00
self.embedder = embedder
self.pitchExtractor = pitchExtractor
2023-07-13 22:28:03 +03:00
print("VOLUME EXTRACTOR", self.volumeExtractor)
2023-07-12 18:59:48 +03:00
print("GENERATE INFERENCER", self.inferencer)
print("GENERATE EMBEDDER", self.embedder)
print("GENERATE PITCH EXTRACTOR", self.pitchExtractor)
self.targetSR = targetSR
self.device = device
2023-07-13 21:33:04 +03:00
self.isHalf = False
2023-07-12 18:59:48 +03:00
def getPipelineInfo(self):
2023-07-13 22:28:03 +03:00
volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo()
2023-07-12 18:59:48 +03:00
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}
embedderInfo = self.embedder.getEmbedderInfo()
pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo()
2023-07-13 22:28:03 +03:00
return {"volumeExtractor": volumeExtractorInfo, "inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf}
2023-07-12 18:59:48 +03:00
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
self.pitchExtractor = pitchExtractor
2023-07-13 21:33:04 +03:00
@torch.no_grad()
def extract_volume_and_mask(self, audio, threhold):
volume = self.volumeExtractor.extract(audio)
2023-07-13 22:28:03 +03:00
mask = self.volumeExtractor.get_mask_from_volume(volume, self.inferencer_block_size, threhold=threhold, device=self.device)
2023-07-13 21:33:04 +03:00
volume = torch.from_numpy(volume).float().to(self.device).unsqueeze(-1).unsqueeze(0)
return volume, mask
2023-07-12 18:59:48 +03:00
def exec(
self,
sid,
audio, # torch.tensor [n]
pitchf, # np.array [m]
feature, # np.array [m, feat]
f0_up_key,
silence_front,
embOutputLayer,
useFinalProj,
2023-07-13 22:28:03 +03:00
protect=0.5
2023-07-12 18:59:48 +03:00
):
# 16000のサンプリングレートで入ってきている。以降この世界は16000で処理。
audio = audio.unsqueeze(0)
2023-07-13 21:33:04 +03:00
self.t_pad = 0
2023-07-12 18:59:48 +03:00
audio_pad = F.pad(audio, (self.t_pad, self.t_pad), mode="reflect").squeeze(0)
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
2023-07-13 21:33:04 +03:00
n_frames = int(audio_pad.size(-1) // self.hop_size + 1)
volume, mask = self.extract_volume_and_mask(audio, threhold=-60.0)
2023-07-12 18:59:48 +03:00
# ピッチ検出
try:
2023-07-13 21:33:04 +03:00
pitch, pitchf = self.pitchExtractor.extract(
audio_pad,
pitchf,
f0_up_key,
16000, # 音声のサンプリングレート(既に16000)
# int(self.hop_size), # 処理のwindowサイズ (44100における512)
int(self.hop_size), # 処理のwindowサイズ (44100における512)
silence_front=silence_front,
)
2023-07-13 22:28:03 +03:00
print("[Pitch]", pitch)
2023-07-13 21:33:04 +03:00
pitch = torch.tensor(pitch[-n_frames:], device=self.device).unsqueeze(0).long() # 160window sizeを前提にバッファを作っているので切る。
pitchf = torch.tensor(pitchf[-n_frames:], device=self.device, dtype=torch.float).unsqueeze(0) # 160window sizeを前提にバッファを作っているので切る。
2023-07-13 22:28:03 +03:00
except IndexError as e: # NOQA
2023-07-12 18:59:48 +03:00
# print(e)
raise NotEnoughDataExtimateF0()
# tensor型調整
feats = audio_pad
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
feats = feats.view(1, -1)
# embedding
with autocast(enabled=self.isHalf):
try:
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
if torch.isnan(feats).all():
raise DeviceCannotSupportHalfPrecisionException()
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
2023-07-13 21:33:04 +03:00
feats = F.interpolate(feats.permute(0, 2, 1), size=int(n_frames), mode='nearest').permute(0, 2, 1)
if protect < 0.5:
feats0 = feats.clone()
# # ピッチサイズ調整
# p_len = audio_pad.shape[0] // self.window
# feats_len = feats.shape[1]
# if feats.shape[1] < p_len:
# p_len = feats_len
# pitch = pitch[:, :feats_len]
# pitchf = pitchf[:, :feats_len]
# pitch = pitch[:, -feats_len:]
# pitchf = pitchf[:, -feats_len:]
# p_len = torch.tensor([feats_len], device=self.device).long()
# print("----------plen::1:", p_len)
2023-07-12 18:59:48 +03:00
# pitchの推定が上手くいかない(pitchf=0)場合、検索前の特徴を混ぜる
# pitchffの作り方の疑問はあるが、本家通りなので、このまま使うことにする。
# https://github.com/w-okada/voice-changer/pull/276#issuecomment-1571336929
2023-07-13 21:33:04 +03:00
if protect < 0.5:
2023-07-12 18:59:48 +03:00
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
2023-07-13 21:33:04 +03:00
# # apply silent front for inference
# if type(self.inferencer) in [OnnxRVCInferencer, OnnxRVCInferencerNono]:
# npyOffset = math.floor(silence_front * 16000) // 360 # 160x2 = 360
# feats = feats[:, npyOffset * 2 :, :] # NOQA
2023-07-12 18:59:48 +03:00
# 推論実行
try:
with torch.no_grad():
with autocast(enabled=self.isHalf):
audio1 = (
torch.clip(
2023-07-13 21:33:04 +03:00
self.inferencer.infer(
feats,
pitch.unsqueeze(-1),
volume,
mask,
sid,
infer_speedup=10,
k_step=20,
silence_front=silence_front
).to(dtype=torch.float32),
2023-07-12 18:59:48 +03:00
-1.0,
1.0,
)
* 32767.5
).data.to(dtype=torch.int16)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
print("11", e)
raise HalfPrecisionChangingException()
else:
raise e
feats_buffer = feats.squeeze(0).detach().cpu()
if pitchf is not None:
pitchf_buffer = pitchf.squeeze(0).detach().cpu()
else:
pitchf_buffer = None
2023-07-13 21:33:04 +03:00
del pitch, pitchf, feats, sid
2023-07-12 18:59:48 +03:00
torch.cuda.empty_cache()
return audio1, pitchf_buffer, feats_buffer