mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
v3モデルのデモンストレーション
This commit is contained in:
parent
3bed1af628
commit
0936b02287
@ -65,6 +65,7 @@ class EnumInferenceTypes(Enum):
|
||||
pyTorchRVCNono = "pyTorchRVCNono"
|
||||
pyTorchRVCv2 = "pyTorchRVCv2"
|
||||
pyTorchRVCv2Nono = "pyTorchRVCv2Nono"
|
||||
pyTorchRVCv3 = "pyTorchRVCv3"
|
||||
pyTorchWebUI = "pyTorchWebUI"
|
||||
pyTorchWebUINono = "pyTorchWebUINono"
|
||||
onnxRVC = "onnxRVC"
|
||||
|
@ -11,7 +11,33 @@ def _setInfoByPytorch(slot: ModelSlot):
|
||||
cpt = torch.load(slot.modelFile, map_location="cpu")
|
||||
config_len = len(cpt["config"])
|
||||
|
||||
if config_len == 18:
|
||||
if cpt["version"] == "v3":
|
||||
slot.f0 = True if cpt["f0"] == 1 else False
|
||||
slot.modelType = EnumInferenceTypes.pyTorchRVCv3.value
|
||||
slot.embChannels = cpt["config"][17]
|
||||
slot.embOutputLayer = (
|
||||
cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9
|
||||
)
|
||||
if slot.embChannels == 256:
|
||||
slot.useFinalProj = True
|
||||
else:
|
||||
slot.useFinalProj = False
|
||||
|
||||
slot.embedder = cpt["embedder_name"]
|
||||
if slot.embedder.endswith("768"):
|
||||
slot.embedder = slot.embedder[:-3]
|
||||
|
||||
if slot.embedder == EnumEmbedderTypes.hubert.value:
|
||||
slot.embedder = EnumEmbedderTypes.hubert.value
|
||||
elif slot.embedder == EnumEmbedderTypes.contentvec.value:
|
||||
slot.embedder = EnumEmbedderTypes.contentvec.value
|
||||
elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
|
||||
slot.embedder = EnumEmbedderTypes.hubert_jp.value
|
||||
print("nadare v3 loaded")
|
||||
else:
|
||||
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
|
||||
|
||||
elif config_len == 18:
|
||||
# Original RVC
|
||||
slot.f0 = True if cpt["f0"] == 1 else False
|
||||
version = cpt.get("version", "v1")
|
||||
|
@ -8,7 +8,7 @@ from voice_changer.RVC.inferencer.RVCInferencerv2 import RVCInferencerv2
|
||||
from voice_changer.RVC.inferencer.RVCInferencerv2Nono import RVCInferencerv2Nono
|
||||
from voice_changer.RVC.inferencer.WebUIInferencer import WebUIInferencer
|
||||
from voice_changer.RVC.inferencer.WebUIInferencerNono import WebUIInferencerNono
|
||||
|
||||
from voice_changer.RVC.inferencer.RVCInferencerv3 import RVCInferencerv3
|
||||
|
||||
class InferencerManager:
|
||||
currentInferencer: Inferencer | None = None
|
||||
@ -37,6 +37,8 @@ class InferencerManager:
|
||||
return RVCInferencerNono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2 or inferencerType == EnumInferenceTypes.pyTorchRVCv2.value:
|
||||
return RVCInferencerv2().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv3 or inferencerType == EnumInferenceTypes.pyTorchRVCv3.value:
|
||||
return RVCInferencerv3().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono or inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono.value:
|
||||
return RVCInferencerv2Nono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUI or inferencerType == EnumInferenceTypes.pyTorchWebUI.value:
|
||||
|
40
server/voice_changer/RVC/inferencer/RVCInferencerv3.py
Normal file
40
server/voice_changer/RVC/inferencer/RVCInferencerv3.py
Normal file
@ -0,0 +1,40 @@
|
||||
import torch
|
||||
from torch import device
|
||||
|
||||
from const import EnumInferenceTypes
|
||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||
from .model_v3.models import SynthesizerTrnMs256NSFSid
|
||||
|
||||
|
||||
class RVCInferencerv3(Inferencer):
|
||||
def loadModel(self, file: str, gpu: device):
|
||||
print("nadare v3 load start")
|
||||
super().setProps(EnumInferenceTypes.pyTorchRVCv3, file, True, gpu)
|
||||
|
||||
dev = DeviceManager.get_instance().getDevice(gpu)
|
||||
isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
|
||||
|
||||
cpt = torch.load(file, map_location="cpu")
|
||||
model = SynthesizerTrnMs256NSFSid(**cpt["params"])
|
||||
|
||||
model.eval()
|
||||
model.load_state_dict(cpt["weight"], strict=False)
|
||||
|
||||
model = model.to(dev)
|
||||
if isHalf:
|
||||
model = model.half()
|
||||
|
||||
self.model = model
|
||||
print("load model comprete")
|
||||
return self
|
||||
|
||||
def infer(
|
||||
self,
|
||||
feats: torch.Tensor,
|
||||
pitch_length: torch.Tensor,
|
||||
pitch: torch.Tensor,
|
||||
pitchf: torch.Tensor,
|
||||
sid: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
return self.model.infer(feats, pitch_length, pitch, pitchf, sid)
|
343
server/voice_changer/RVC/inferencer/model_v3/attentions.py
Normal file
343
server/voice_changer/RVC/inferencer/model_v3/attentions.py
Normal file
@ -0,0 +1,343 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
from . import commons
|
||||
from .modules import LayerNorm, LoRALinear1d
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
window_size=25,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.attn_layers[i](x, x, g, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask, g)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.attn_layers:
|
||||
l.remove_weight_norm()
|
||||
for l in self.ffn_layers:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
p_dropout=0.0,
|
||||
window_size=None,
|
||||
heads_share=False,
|
||||
block_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_k = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_v = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_qkw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
|
||||
self.conv_vw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
|
||||
self.conv_o = LoRALinear1d(channels, out_channels, gin_channels, 2)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
self.emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
|
||||
def forward(self, x, c, g, attn_mask=None):
|
||||
q = self.conv_qkw(self.conv_q(x, g))
|
||||
k = self.conv_qkw(self.conv_k(c, g))
|
||||
v = self.conv_vw(self.conv_v(c, g))
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x, g)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(
|
||||
query / math.sqrt(self.k_channels), key_relative_embeddings
|
||||
)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(
|
||||
device=scores.device, dtype=scores.dtype
|
||||
)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Local attention is only available for self-attention."
|
||||
block_mask = (
|
||||
torch.ones_like(scores)
|
||||
.triu(-self.block_length)
|
||||
.tril(self.block_length)
|
||||
)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_v, t_s
|
||||
)
|
||||
output = output + self._matmul_with_relative_values(
|
||||
relative_weights, value_relative_embeddings
|
||||
)
|
||||
output = (
|
||||
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
||||
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||
)
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[
|
||||
:, slice_start_position:slice_end_position
|
||||
]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(
|
||||
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
||||
:, :, :length, length - 1 :
|
||||
]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(
|
||||
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.conv_q.remove_weight_norm()
|
||||
self.conv_k.remove_weight_norm()
|
||||
self.conv_v.remove_weight_norm()
|
||||
self.conv_o.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_qkw)
|
||||
remove_weight_norm(self.conv_vw)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation=None,
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
self.conv_1 = LoRALinear1d(in_channels, filter_channels, gin_channels, 2)
|
||||
self.conv_2 = LoRALinear1d(filter_channels, out_channels, gin_channels, 2)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x = self.conv_1(x * x_mask, g)
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask, g)
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.conv_1.remove_weight_norm()
|
||||
self.conv_2.remove_weight_norm()
|
165
server/voice_changer/RVC/inferencer/model_v3/commons.py
Normal file
165
server/voice_changer/RVC/inferencer/model_v3/commons.py
Normal file
@ -0,0 +1,165 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
r = x[i, :, idx_str:idx_end]
|
||||
ret[i, :, :r.size(1)] = r
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments2(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
r = x[i, idx_str:idx_end]
|
||||
ret[i, :r.size(0)] = r
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths, segment_size=4, ids_str=None):
|
||||
b, d, t = x.size()
|
||||
if ids_str is None:
|
||||
ids_str = torch.zeros([b]).to(device=x.device, dtype=x_lengths.dtype)
|
||||
ids_str_max = torch.maximum(torch.zeros_like(x_lengths).to(device=x_lengths.device ,dtype=x_lengths.dtype), x_lengths - segment_size + 1 - ids_str)
|
||||
ids_str += (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
71
server/voice_changer/RVC/inferencer/model_v3/config.py
Normal file
71
server/voice_changer/RVC/inferencer/model_v3/config.py
Normal file
@ -0,0 +1,71 @@
|
||||
from typing import *
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TrainConfigTrain(BaseModel):
|
||||
log_interval: int
|
||||
seed: int
|
||||
epochs: int
|
||||
learning_rate: float
|
||||
betas: List[float]
|
||||
eps: float
|
||||
batch_size: int
|
||||
fp16_run: bool
|
||||
lr_decay: float
|
||||
segment_size: int
|
||||
init_lr_ratio: int
|
||||
warmup_epochs: int
|
||||
c_mel: int
|
||||
c_kl: float
|
||||
|
||||
|
||||
class TrainConfigData(BaseModel):
|
||||
max_wav_value: float
|
||||
sampling_rate: int
|
||||
filter_length: int
|
||||
hop_length: int
|
||||
win_length: int
|
||||
n_mel_channels: int
|
||||
mel_fmin: float
|
||||
mel_fmax: Any
|
||||
|
||||
|
||||
class TrainConfigModel(BaseModel):
|
||||
inter_channels: int
|
||||
hidden_channels: int
|
||||
filter_channels: int
|
||||
n_heads: int
|
||||
n_layers: int
|
||||
kernel_size: int
|
||||
p_dropout: int
|
||||
resblock: str
|
||||
resblock_kernel_sizes: List[int]
|
||||
resblock_dilation_sizes: List[List[int]]
|
||||
upsample_rates: List[int]
|
||||
upsample_initial_channel: int
|
||||
upsample_kernel_sizes: List[int]
|
||||
use_spectral_norm: bool
|
||||
gin_channels: int
|
||||
emb_channels: int
|
||||
spk_embed_dim: int
|
||||
|
||||
|
||||
class TrainConfig(BaseModel):
|
||||
version: Literal["v1", "v2"] = "v2"
|
||||
train: TrainConfigTrain
|
||||
data: TrainConfigData
|
||||
model: TrainConfigModel
|
||||
|
||||
|
||||
class DatasetMetaItem(BaseModel):
|
||||
gt_wav: str
|
||||
co256: str
|
||||
f0: Optional[str]
|
||||
f0nsf: Optional[str]
|
||||
speaker_id: int
|
||||
|
||||
|
||||
class DatasetMetadata(BaseModel):
|
||||
files: Dict[str, DatasetMetaItem]
|
||||
# mute: DatasetMetaItem
|
522
server/voice_changer/RVC/inferencer/model_v3/models.py
Normal file
522
server/voice_changer/RVC/inferencer/model_v3/models.py
Normal file
@ -0,0 +1,522 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import attentions, commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .modules import (CausalConvTranspose1d, ConvNext2d, DilatedCausalConv1d,
|
||||
LoRALinear1d, ResBlock1, WaveConv1D)
|
||||
|
||||
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels: int,
|
||||
hidden_channels: int,
|
||||
filter_channels: int,
|
||||
emb_channels: int,
|
||||
gin_channels: int,
|
||||
n_heads: int,
|
||||
n_layers: int,
|
||||
kernel_size: int,
|
||||
p_dropout: int,
|
||||
f0: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.emb_g = nn.Conv1d(gin_channels, hidden_channels, 1)
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths, g):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask, g)
|
||||
x = self.proj(x)
|
||||
|
||||
return x, None, x_mask
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = torch.ones_like(f0)
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
gin_channels,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Conv1d(gin_channels, harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
sine_raw = torch.transpose(sine_wavs, 1, 2).to(device=x.device, dtype=x.dtype)
|
||||
return sine_raw, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
initial_channel,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
harmonic_num=16,
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.upsample_rates = upsample_rates
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr, gin_channels=gin_channels, harmonic_num=harmonic_num, is_half=is_half
|
||||
)
|
||||
self.gpre = Conv1d(gin_channels, initial_channel, 1)
|
||||
self.conv_pre = ResBlock1(initial_channel, upsample_initial_channel, gin_channels, [7] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, 2)
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
self.resblocks = nn.ModuleList()
|
||||
c_cur = upsample_initial_channel
|
||||
for i, u in enumerate(upsample_rates):
|
||||
c_pre = c_cur
|
||||
c_cur = c_pre // 2
|
||||
self.ups.append(
|
||||
CausalConvTranspose1d(
|
||||
c_pre,
|
||||
c_pre,
|
||||
kernel_rate=3,
|
||||
stride=u,
|
||||
groups=c_pre,
|
||||
)
|
||||
)
|
||||
self.resblocks.append(ResBlock1(c_pre, c_cur, gin_channels, [11] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, r=2))
|
||||
self.conv_post = DilatedCausalConv1d(c_cur, 1, 5, stride=1, groups=1, dilation=1, bias=False)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.noise_pre = LoRALinear1d(1 + harmonic_num, c_pre, gin_channels, r=2+harmonic_num)
|
||||
for i, u in enumerate(upsample_rates[::-1]):
|
||||
c_pre = c_pre * 2
|
||||
c_cur = c_cur * 2
|
||||
if i + 1 < len(upsample_rates):
|
||||
self.noise_convs.append(DilatedCausalConv1d(c_cur, c_pre, kernel_size=u*3, stride=u, groups=c_cur, dilation=1))
|
||||
else:
|
||||
self.noise_convs.append(DilatedCausalConv1d(c_cur, initial_channel, kernel_size=u*3, stride=u, groups=math.gcd(c_cur, initial_channel), dilation=1))
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, x_mask, f0f, g):
|
||||
har_source, noi_source, uv = self.m_source(f0f, self.upp)
|
||||
har_source = self.noise_pre(har_source, g)
|
||||
x_sources = [har_source]
|
||||
for c in self.noise_convs:
|
||||
har_source = c(har_source)
|
||||
x_sources.append(har_source)
|
||||
|
||||
x = x + x_sources[-1]
|
||||
x = x + self.gpre(g)
|
||||
x = self.conv_pre(x, x_mask, g)
|
||||
for i, u in enumerate(self.upsample_rates):
|
||||
x_mask = torch.repeat_interleave(x_mask, u, 2)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
x = self.resblocks[i](x + x_sources[-i-2], x_mask, g)
|
||||
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
if x_mask is not None:
|
||||
x *= x_mask
|
||||
x = torch.tanh(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.noise_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFSid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
emb_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.sr = sr
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
|
||||
self.emb_pitch = nn.Embedding(256, emb_channels) # pitch 256
|
||||
self.dec = GeneratorNSF(
|
||||
emb_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
)
|
||||
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print(
|
||||
"gin_channels:",
|
||||
gin_channels,
|
||||
"self.spk_embed_dim:",
|
||||
self.spk_embed_dim,
|
||||
"emb_channels:",
|
||||
emb_channels,
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||
): # 这里ds是id,[bs,1]
|
||||
# print(1,pitch.shape)#[bs,t]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
# m_p, _, x_mask = self.enc_p(phone, pitch, phone_lengths, g)
|
||||
# z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
# z_p = self.flow(m_p * x_mask, x_mask, g=g)
|
||||
|
||||
x = phone + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
|
||||
phone.dtype
|
||||
)
|
||||
|
||||
m_p_slice, ids_slice = commons.rand_slice_segments(
|
||||
x, phone_lengths, self.segment_size
|
||||
)
|
||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
|
||||
# print(-2,pitchf.shape,z_slice.shape)
|
||||
o = self.dec(m_p_slice, mask_slice, pitchf, g)
|
||||
return o, ids_slice, x_mask, g
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
x = phone + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
|
||||
phone.dtype
|
||||
)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], x_mask, nsff0, g)
|
||||
return o, x_mask, (None, None, None, None)
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels: int,
|
||||
filter_channels: int,
|
||||
gin_channels: int,
|
||||
n_heads: int,
|
||||
n_layers: int,
|
||||
kernel_size: int,
|
||||
p_dropout: int,
|
||||
):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
self.convs = WaveConv1D(2, hidden_channels, gin_channels, [10, 7, 7, 7, 5, 3, 3], [5, 4, 4, 4, 3, 2, 2], [1] * 7, hidden_channels // 2, False)
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, gin_channels, n_heads, n_layers//2, kernel_size, p_dropout
|
||||
)
|
||||
self.cross = weight_norm(torch.nn.Conv1d(gin_channels, hidden_channels, 1, 1))
|
||||
self.conv_post = weight_norm(torch.nn.Conv1d(hidden_channels, 1, 3, 1, padding=get_padding(5, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.convs(x)
|
||||
x_mask = torch.ones([x.shape[0], 1, x.shape[2]], device=x.device, dtype=x.dtype)
|
||||
x = self.encoder(x, x_mask, g)
|
||||
fmap = [x]
|
||||
x = x + x * self.cross(g)
|
||||
y = self.conv_post(x)
|
||||
return y, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
self.init_kernel_size = upsample_rates[-1] * 3
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
N = len(upsample_rates)
|
||||
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
|
||||
self.convs = nn.ModuleList()
|
||||
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
|
||||
self.convs.append(
|
||||
ConvNext2d(
|
||||
final_dim // (2 ** (N - i)),
|
||||
final_dim // (2 ** (N - i - 1)),
|
||||
gin_channels,
|
||||
(u*3, 1),
|
||||
(u, 1),
|
||||
4,
|
||||
r=2
|
||||
)
|
||||
)
|
||||
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (n_pad, 0), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
x = torch.flip(x, dims=[2])
|
||||
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
|
||||
x = self.init_conv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = torch.flip(x, dims=[2])
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
x = l(x, g)
|
||||
if i >= 1:
|
||||
fmap.append(x)
|
||||
|
||||
x = F.pad(x, [0, 0, 2, 0], mode="constant")
|
||||
x = self.conv_post(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
|
||||
# discs = [DiscriminatorS(hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout)]
|
||||
discs = [
|
||||
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
|
||||
]
|
||||
self.ups = np.prod(upsample_rates)
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat, g):
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y, g)
|
||||
y_d_g, fmap_g = d(y_hat, g)
|
||||
# for j in range(len(fmap_r)):
|
||||
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
||||
y_d_rs.append(y_d_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_rs.append(fmap_r)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
626
server/voice_changer/RVC/inferencer/model_v3/modules.py
Normal file
626
server/voice_changer/RVC/inferencer/model_v3/modules.py
Normal file
@ -0,0 +1,626 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
hidden_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
p_dropout,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers - 1):
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
groups=channels,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
p_dropout=0,
|
||||
):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = (kernel_size,)
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(
|
||||
gin_channels, 2 * hidden_channels * n_layers, 1
|
||||
)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class DilatedCausalConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
|
||||
super(DilatedCausalConv1d, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
|
||||
init_weights(self.conv)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.flip(x, [2])
|
||||
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
|
||||
size = x.shape[2] // self.stride
|
||||
x = self.conv(x)[:, :, :size]
|
||||
x = torch.flip(x, [2])
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class CausalConvTranspose1d(nn.Module):
|
||||
"""
|
||||
padding = 0, dilation = 1のとき
|
||||
|
||||
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
|
||||
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
|
||||
output_paddingいらないね
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
|
||||
super(CausalConvTranspose1d, self).__init__()
|
||||
kernel_size = kernel_rate * stride
|
||||
self.trim_size = (kernel_rate - 1) * stride
|
||||
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return x[:, :, :-self.trim_size]
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class LoRALinear1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
init_weights(self.main_fc)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
|
||||
def forward(self, x, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
x = self.main_fc(x) + torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
|
||||
class LoRALinear2d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
|
||||
def forward(self, x, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
x = self.main_fc(x) + torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
|
||||
class WaveConv1D(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r, use_spectral_norm=False):
|
||||
super(WaveConv1D, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.convs = []
|
||||
# self.norms = []
|
||||
self.convs.append(LoRALinear1d(in_channels, inner_channels, gin_channels, r))
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations), start=1):
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, k, s, dilation=d, groups=inner_channels, padding=get_padding(k, d))))
|
||||
if i < len(kernel_sizes):
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, 1, 1)))
|
||||
else:
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, out_channels, 1, 1)))
|
||||
self.convs = nn.ModuleList(self.convs)
|
||||
|
||||
def forward(self, x, g, x_mask=None):
|
||||
for i, l in enumerate(self.convs):
|
||||
if i % 2:
|
||||
x_ = l(x)
|
||||
else:
|
||||
x_ = l(x, g)
|
||||
x = F.leaky_relu(x_, modules.LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
x *= x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for i, c in enumerate(self.convs):
|
||||
if i % 2:
|
||||
remove_weight_norm(c)
|
||||
else:
|
||||
c.remove_weight_norm()
|
||||
|
||||
|
||||
class MBConv2d(torch.nn.Module):
|
||||
"""
|
||||
Causal MBConv2D
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(MBConv2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.pre_pointwise = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.depthwise = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
|
||||
self.post_pointwise = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.pre_pointwise(x, g)
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.depthwise(x)
|
||||
x = self.post_pointwise(x, g)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNext2d(torch.nn.Module):
|
||||
"""
|
||||
Causal ConvNext Block
|
||||
stride = 1 only
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(ConvNext2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.act = nn.GELU()
|
||||
self.norm = LayerNorm(in_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.pwconv2(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.dwconv)
|
||||
|
||||
|
||||
class SqueezeExcitation1D(torch.nn.Module):
|
||||
def __init__(self, input_channels, squeeze_channels, gin_channels, use_spectral_norm=False):
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
super(SqueezeExcitation1D, self).__init__()
|
||||
self.fc1 = LoRALinear1d(input_channels, squeeze_channels, gin_channels, 2)
|
||||
self.fc2 = LoRALinear1d(squeeze_channels, input_channels, gin_channels, 2)
|
||||
|
||||
def _scale(self, x, x_mask, g):
|
||||
x_length = torch.sum(x_mask, dim=2, keepdim=True)
|
||||
x_length = torch.maximum(x_length, torch.ones_like(x_length))
|
||||
scale = torch.sum(x * x_mask, dim=2, keepdim=True) / x_length
|
||||
scale = self.fc1(scale, g)
|
||||
scale = F.leaky_relu(scale, modules.LRELU_SLOPE)
|
||||
scale = self.fc2(scale, g)
|
||||
return torch.sigmoid(scale)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
scale = self._scale(x, x_mask, g)
|
||||
return scale * x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.fc1.remove_weight_norm()
|
||||
self.fc2.remove_weight_norm()
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r):
|
||||
super(ResBlock1, self).__init__()
|
||||
norm_f = weight_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.dconvs = nn.ModuleList()
|
||||
self.pconvs = nn.ModuleList()
|
||||
# self.ses = nn.ModuleList()
|
||||
self.norms = nn.ModuleList()
|
||||
self.init_conv = LoRALinear1d(in_channels, inner_channels, gin_channels, r)
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
|
||||
self.norms.append(LayerNorm(inner_channels))
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
|
||||
if i < len(kernel_sizes) - 1:
|
||||
self.pconvs.append(LoRALinear1d(inner_channels, inner_channels, gin_channels, r))
|
||||
self.out_conv = LoRALinear1d(inner_channels, out_channels, gin_channels, r)
|
||||
init_weights(self.init_conv)
|
||||
init_weights(self.out_conv)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x *= x_mask
|
||||
x = self.init_conv(x, g)
|
||||
for i in range(len(self.dconvs)):
|
||||
x *= x_mask
|
||||
x = self.norms[i](x)
|
||||
x_ = self.dconvs[i](x)
|
||||
x_ = F.leaky_relu(x_, modules.LRELU_SLOPE)
|
||||
if i < len(self.dconvs) - 1:
|
||||
x = x + self.pconvs[i](x_, g)
|
||||
x = self.out_conv(x_, g)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.pconvs:
|
||||
c.remove_weight_norm()
|
||||
self.init_conv.remove_weight_norm()
|
||||
self.out_conv.remove_weight_norm()
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=p_dropout,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
num_bins=10,
|
||||
tail_bound=5.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(
|
||||
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
||||
)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
||||
self.filter_channels
|
||||
)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
207
server/voice_changer/RVC/inferencer/model_v3/transforms.py
Normal file
207
server/voice_changer/RVC/inferencer/model_v3/transforms.py
Normal file
@ -0,0 +1,207 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
286
server/voice_changer/RVC/inferencer/model_v3/utils.py
Normal file
286
server/voice_changer/RVC/inferencer/model_v3/utils.py
Normal file
@ -0,0 +1,286 @@
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import socket
|
||||
import sys
|
||||
|
||||
import ffmpeg
|
||||
import matplotlib
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
from scipy.io.wavfile import read
|
||||
from torch.nn import functional as F
|
||||
|
||||
from modules.shared import ROOT_DIR
|
||||
|
||||
from .config import TrainConfig
|
||||
|
||||
matplotlib.use("Agg")
|
||||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
|
||||
class AWP:
|
||||
"""
|
||||
Fast AWP
|
||||
https://www.kaggle.com/code/junkoda/fast-awp
|
||||
"""
|
||||
def __init__(self, model, optimizer, *, adv_param='weight',
|
||||
adv_lr=0.01, adv_eps=0.01):
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.adv_param = adv_param
|
||||
self.adv_lr = adv_lr
|
||||
self.adv_eps = adv_eps
|
||||
self.backup = {}
|
||||
|
||||
def perturb(self):
|
||||
"""
|
||||
Perturb model parameters for AWP gradient
|
||||
Call before loss and loss.backward()
|
||||
"""
|
||||
self._save() # save model parameters
|
||||
self._attack_step() # perturb weights
|
||||
|
||||
def _attack_step(self):
|
||||
e = 1e-6
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad and param.grad is not None and self.adv_param in name:
|
||||
grad = self.optimizer.state[param]['exp_avg']
|
||||
norm_grad = torch.norm(grad)
|
||||
norm_data = torch.norm(param.detach())
|
||||
|
||||
if norm_grad != 0 and not torch.isnan(norm_grad):
|
||||
# Set lower and upper limit in change
|
||||
limit_eps = self.adv_eps * param.detach().abs()
|
||||
param_min = param.data - limit_eps
|
||||
param_max = param.data + limit_eps
|
||||
|
||||
# Perturb along gradient
|
||||
# w += (adv_lr * |w| / |grad|) * grad
|
||||
param.data.add_(grad, alpha=(self.adv_lr * (norm_data + e) / (norm_grad + e)))
|
||||
|
||||
# Apply the limit to the change
|
||||
param.data.clamp_(param_min, param_max)
|
||||
|
||||
def _save(self):
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad and param.grad is not None and self.adv_param in name:
|
||||
if name not in self.backup:
|
||||
self.backup[name] = param.clone().detach()
|
||||
else:
|
||||
self.backup[name].copy_(param.data)
|
||||
|
||||
def restore(self):
|
||||
"""
|
||||
Restore model parameter to correct position; AWP do not perturbe weights, it perturb gradients
|
||||
Call after loss.backward(), before optimizer.step()
|
||||
"""
|
||||
for name, param in self.model.named_parameters():
|
||||
if name in self.backup:
|
||||
param.data.copy_(self.backup[name])
|
||||
|
||||
|
||||
def load_audio(file: str, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # Prevent small white copy path head and tail with spaces and " and return
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.float32).flatten()
|
||||
|
||||
|
||||
def find_empty_port():
|
||||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
s.bind(("", 0))
|
||||
s.listen(1)
|
||||
port = s.getsockname()[1]
|
||||
s.close()
|
||||
return port
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
f"shape-{k}-mismatch|need-{state_dict[k].shape}|get-{saved_state_dict[k].shape}"
|
||||
)
|
||||
if saved_state_dict[k].dim() == 2: # NOTE: check is this ok?
|
||||
# for embedded input 256 <==> 768
|
||||
# this achieves we can continue training from original's pretrained checkpoints when using embedder that 768-th dim output etc.
|
||||
if saved_state_dict[k].dtype == torch.half:
|
||||
new_state_dict[k] = (
|
||||
F.interpolate(
|
||||
saved_state_dict[k].float().unsqueeze(0).unsqueeze(0),
|
||||
size=state_dict[k].shape,
|
||||
mode="bilinear",
|
||||
)
|
||||
.half()
|
||||
.squeeze(0)
|
||||
.squeeze(0)
|
||||
)
|
||||
else:
|
||||
new_state_dict[k] = (
|
||||
F.interpolate(
|
||||
saved_state_dict[k].unsqueeze(0).unsqueeze(0),
|
||||
size=state_dict[k].shape,
|
||||
mode="bilinear",
|
||||
)
|
||||
.squeeze(0)
|
||||
.squeeze(0)
|
||||
)
|
||||
print(
|
||||
"interpolated new_state_dict",
|
||||
k,
|
||||
"from",
|
||||
saved_state_dict[k].shape,
|
||||
"to",
|
||||
new_state_dict[k].shape,
|
||||
)
|
||||
else:
|
||||
raise KeyError
|
||||
except Exception as e:
|
||||
# print(traceback.format_exc())
|
||||
print(f"{k} is not in the checkpoint")
|
||||
print("error: %s" % e)
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
print("Loaded model weights")
|
||||
|
||||
epoch = checkpoint_dict["epoch"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if optimizer is not None and load_opt == 1:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
print("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, epoch))
|
||||
return model, optimizer, learning_rate, epoch
|
||||
|
||||
|
||||
def save_state(model, optimizer, learning_rate, epoch, checkpoint_path):
|
||||
print(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
epoch, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"epoch": epoch,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
filelist = glob.glob(os.path.join(dir_path, regex))
|
||||
if len(filelist) == 0:
|
||||
return None
|
||||
filelist.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
filepath = filelist[-1]
|
||||
return filepath
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
|
||||
|
||||
def load_config(training_dir: str, sample_rate: int, emb_channels: int):
|
||||
if emb_channels == 256:
|
||||
config_path = os.path.join(ROOT_DIR, "configs", f"{sample_rate}.json")
|
||||
else:
|
||||
config_path = os.path.join(
|
||||
ROOT_DIR, "configs", f"{sample_rate}-{emb_channels}.json"
|
||||
)
|
||||
config_save_path = os.path.join(training_dir, "config.json")
|
||||
|
||||
shutil.copyfile(config_path, config_save_path)
|
||||
|
||||
return TrainConfig.parse_file(config_save_path)
|
Loading…
Reference in New Issue
Block a user