diff --git a/SoftVcDemo.ipynb b/SoftVcDemo.ipynb index 92425811..b4b8366e 100644 --- a/SoftVcDemo.ipynb +++ b/SoftVcDemo.ipynb @@ -11,27 +11,101 @@ ] }, { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "5m_Xf_2NY6mI" - }, - "outputs": [], + "cell_type": "markdown", "source": [ - "import torch, torchaudio\n", - "import IPython.display as display" - ] + "Voice Changer (soft-vc)\n", + "---\n", + "\n", + "This note is a demo version of Voice Changer for soft-vc. This demo is customized so as to run on Colab.\n", + "\n", + "The full version is an application that runs on Docker on a local PC.\n", + "\n", + "In general, the official version can convert audio smoothly with less time lag.\n", + "\n", + "Detailed usage instructions can be found in [this repository](https://github.com/w-okada/voice-changer)." + ], + "metadata": { + "id": "1ZGMhH_TqK-g" + } + }, + { + "cell_type": "markdown", + "source": [ + "# Check GPU\n", + "GPU is required for soft-vc. Confirm GPU is assigned. " + ], + "metadata": { + "id": "s4nKpd5ArRky" + } }, { "cell_type": "code", - "execution_count": 2, + "source": [ + "# (1) Confirm GPU \n", + "!nvidia-smi" + ], "metadata": { - "id": "GGiC0rT2hoik", + "id": "cGXhQNzhrQxO", + "outputId": "19f8cd58-28ff-4e02-86fa-8a2484dabf6a", "colab": { "base_uri": "https://localhost:8080/" - }, - "outputId": "956d1935-0afd-404b-c64d-e10a0af67565" + } }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sun Sep 18 22:18:45 2022 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|===============================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 35C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |\n", + "| | | N/A |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Install and import modules \n", + "Install required modules.\n" + ], + "metadata": { + "id": "RN5bYStxr5eI" + } + }, + { + "cell_type": "code", + "source": [ + "# (2-1) Install Modules\n", + "!pip install fastapi\n", + "!pip install uvicorn\n" + ], + "metadata": { + "id": "od54JTHBrysO", + "outputId": "267858d4-94f2-4606-e10c-d2b872248337", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 3, "outputs": [ { "output_type": "stream", @@ -40,84 +114,102 @@ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting fastapi\n", " Downloading fastapi-0.85.0-py3-none-any.whl (55 kB)\n", - "\u001b[K |████████████████████████████████| 55 kB 3.6 MB/s \n", + "\u001b[K |████████████████████████████████| 55 kB 3.0 MB/s \n", "\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.9.2)\n", "Collecting starlette==0.20.4\n", " Downloading starlette-0.20.4-py3-none-any.whl (63 kB)\n", - "\u001b[K |████████████████████████████████| 63 kB 2.8 MB/s \n", + "\u001b[K |████████████████████████████████| 63 kB 2.5 MB/s \n", "\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n", "Collecting anyio<5,>=3.4.0\n", " Downloading anyio-3.6.1-py3-none-any.whl (80 kB)\n", - "\u001b[K |████████████████████████████████| 80 kB 10.3 MB/s \n", - "\u001b[?25hCollecting sniffio>=1.1\n", + "\u001b[K |████████████████████████████████| 80 kB 10.8 MB/s \n", + "\u001b[?25hRequirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n", + "Collecting sniffio>=1.1\n", " Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n", - "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n", "Installing collected packages: sniffio, anyio, starlette, fastapi\n", "Successfully installed anyio-3.6.1 fastapi-0.85.0 sniffio-1.3.0 starlette-0.20.4\n", "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting uvicorn\n", " Downloading uvicorn-0.18.3-py3-none-any.whl (57 kB)\n", - "\u001b[K |████████████████████████████████| 57 kB 5.0 MB/s \n", + "\u001b[K |████████████████████████████████| 57 kB 3.8 MB/s \n", "\u001b[?25hCollecting h11>=0.8\n", " Downloading h11-0.13.0-py3-none-any.whl (58 kB)\n", - "\u001b[K |████████████████████████████████| 58 kB 7.0 MB/s \n", - "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n", - "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n", + "\u001b[K |████████████████████████████████| 58 kB 6.3 MB/s \n", + "\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n", "Installing collected packages: h11, uvicorn\n", "Successfully installed h11-0.13.0 uvicorn-0.18.3\n" ] } - ], - "source": [ - "!pip install fastapi\n", - "!pip install uvicorn" ] }, { "cell_type": "code", - "execution_count": 3, + "source": [ + "# (2-2) Import Modules\n", + "import torch" + ], + "metadata": { + "id": "eCb2j68vsqxB" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# Load models\n", + "soft-vc needs 3 models." + ], + "metadata": { + "id": "wtPl3S3Xsfmp" + } + }, + { + "cell_type": "code", + "execution_count": 6, "metadata": { "id": "WO8XzrFMZGoj", "colab": { "base_uri": "https://localhost:8080/", "height": 324, "referenced_widgets": [ - "d1c9c8fc7db14c05ab0b749c06d28757", - "f6791dc0da564f81b3176ec1f8033a0c", - "5ea49bc3274b4fb3a00fae03c22bf28c", - "66c0b6c9b8b24bcf8bcfce6cc9d66d16", - "741f6105a3244cc39d07c87b61a6db70", - "3fde19555e6a44dc94584bb5e3e45230", - "f6a1ecd1738841fc829e341e2ca8b8e2", - "c2b0e85192e14f81b24bc60c2927367f", - "d387b634dac34baeb70ad7ec290960f4", - "5786621a68b94255ab505105a4f567e4", - "69c64360c23d4af9a18f7d197c792c0d", - "86662c7f8cf24bd2ab30a25e9376810a", - "ef214cd0a5ed4fc98a0252fe7626a784", - "24ee783ae0c545bca6669d76b9edc659", - "cdfc92c62f5a48628630516c50beb1e4", - "338b0dea05dd40df9df80aa9e03f6d2d", - "d5304913d0c34891804dadc55619df14", - "630430c86ad54fbdbca9ea979f6ee5af", - "afb96e0bbf2944948734ebc7536bc5b4", - "8523ea8056334830b8029b40f680c919", - "bd733abfa27d49e79205a8c8b83a7d56", - "bdc3ec183e854783bd5872dfbab2b1d1", - "60c0c9c8c8d7408e8225218063184b30", - "8993b4dc621a4d9d86f34816c35ba586", - "31a006a5b20749428459f18d20c244c4", - "350d51f1af7d41018fe8e7a95d51e5d6", - "82aa6f8faed74f1baa2e5673ce78a7e0", - "5c5ba05e0cca4810991903b7f37af96b", - "65a95487f3594da2924ed12340032eaf", - "21dd227254924fcc8d75d9187a393f11", - "1cf612f6c11847d89721cab4b6d88223", - "7e031f847c4d4c9f80dd80d8041f16e8", - "a2d3c4edf54d41a5b65f28d967b1be77" + "fad16a0235aa4e5bb2b8de5fcb183243", + "bc5c75fcb2e44548ab5aa978eeb9b8a6", + "62c8e5c4546c4c17ad4125ddb0907d63", + "52fed3e4db2747c2b70828a73073e909", + "0fc41e46c8fa4853b88a2af2345be149", + "ea2165bce13c4823bf8d9d77d4b63f49", + "8b51c58c91d3418c8d6dc619af78dafa", + "2f511db422d5487fab18d16a8b61b585", + "4c8d6b8d405e4ecf841ff782fd7a34cb", + "96954daa268a471cabedd434935aac23", + "de6bcd48cc164bcd99825a250b70cb53", + "0239844e12e64b9981e9e78dcf57d0ef", + "2bf83e0402c2485b998b35ef783b3548", + "f83daf5b13204f0a9b9dc1ee0271e6b0", + "6d46c9a7d2714add9164ba6487739b57", + "a7cf75ed1bd94a238253fa071d5b3150", + "a50e5de44a474d6c863258fbd14d0401", + "c82e786218ed47ab80ae5173b690fffe", + "28f5c855824b4a0eb899b196a2356b45", + "7956a1d6392b4b6fab81e098e54dfefc", + "19a1448c941249eb81d0d9bcdb3c6739", + "6f41807bbd764265879de3b83d247ad4", + "1b89d116460746cb90858d77ff65cffa", + "6d7b8dd5f7cc41329cfc590141f3927a", + "878fc80433d84cb98b607629c8fecf08", + "cc841ac2ac954db78989389970890582", + "bb701d96133442c6b3aa70ddc585d01c", + "e38d4376820c40de97d97c78b119cd4f", + "59323fae26814e03bad57866d75b76f1", + "b5b11bfc014c4a76a421012fb096e8e5", + "5da63d520023436aa71101b5561a5744", + "3040cd18ddae4853801274c3f10d17b0", + "e533525617774461991000eb56899c0b" ] }, - "outputId": "9f2ca3b9-817f-408d-8ee9-d5cc7793977d" + "outputId": "acd54070-6987-466f-d3ae-11f1ae22fbad" }, "outputs": [ { @@ -139,7 +231,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d1c9c8fc7db14c05ab0b749c06d28757" + "model_id": "fad16a0235aa4e5bb2b8de5fcb183243" } }, "metadata": {} @@ -163,7 +255,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "86662c7f8cf24bd2ab30a25e9376810a" + "model_id": "0239844e12e64b9981e9e78dcf57d0ef" } }, "metadata": {} @@ -185,7 +277,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "60c0c9c8c8d7408e8225218063184b30" + "model_id": "1b89d116460746cb90858d77ff65cffa" } }, "metadata": {} @@ -199,20 +291,30 @@ } ], "source": [ + "# (3) Load modules\n", "hubert = torch.hub.load(\"bshall/hubert:main\", \"hubert_soft\").cuda()\n", "acoustic = torch.hub.load(\"bshall/acoustic-model:main\", \"hubert_soft\").cuda()\n", "hifigan = torch.hub.load(\"bshall/hifigan:main\", \"hifigan_hubert_soft\").cuda()" ] }, + { + "cell_type": "markdown", + "source": [ + "# Clone repository and configure\n" + ], + "metadata": { + "id": "N0_ELMyls0Yl" + } + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lzo_ZWmAjaby", - "outputId": "f6e1b4f7-09f2-48fa-d368-d4ff51b7c5a2" + "outputId": "425649e6-8c52-4142-869f-079d99bf958c" }, "outputs": [ { @@ -220,28 +322,28 @@ "name": "stdout", "text": [ "Cloning into 'voice-changer'...\n", - "remote: Enumerating objects: 100, done.\u001b[K\n", - "remote: Counting objects: 100% (100/100), done.\u001b[K\n", + "remote: Enumerating objects: 101, done.\u001b[K\n", + "remote: Counting objects: 100% (101/101), done.\u001b[K\n", "remote: Compressing objects: 100% (87/87), done.\u001b[K\n", - "remote: Total 100 (delta 11), reused 69 (delta 5), pack-reused 0\u001b[K\n", - "Receiving objects: 100% (100/100), 18.97 MiB | 9.04 MiB/s, done.\n", - "Resolving deltas: 100% (11/11), done.\n", + "remote: Total 101 (delta 12), reused 70 (delta 6), pack-reused 0\u001b[K\n", + "Receiving objects: 100% (101/101), 18.97 MiB | 21.06 MiB/s, done.\n", + "Resolving deltas: 100% (12/12), done.\n", "/content/voice-changer/demo\n" ] } ], "source": [ - "# (3) リポジトリのクローン\n", + "# (4-1) Clone Repository\n", "!git clone --depth 1 https://github.com/w-okada/voice-changer.git\n", "%cd voice-changer/demo/" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "metadata": { "id": "8-z9j4e_j-Wb", - "outputId": "b4b1940a-debb-4cee-de06-6df269b637d7", + "outputId": "a4855bb5-15d6-44f6-9201-8a78ea2f2309", "colab": { "base_uri": "https://localhost:8080/" } @@ -293,20 +395,34 @@ } ], "source": [ - "# (4-1) 設定ファイルの配置\n", + "# (4-2) settle the config file\n", "!cp ../template/setting_softvc_colab.json ../frontend/dist/assets/setting.json\n", "!cat ../frontend/dist/assets/setting.json\n" ] }, + { + "cell_type": "markdown", + "source": [ + "# Invoke server\n", + "\n", + "Invoke server with below (5-1)cell. And wait for ready with the command in (5-2)cell.\n", + "\n", + "Please wait for a while, then you can see the messsage.\n", + "`Application startup complete.`." + ], + "metadata": { + "id": "hZAE_4gYtGOz" + } + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": { "id": "-iPiSzvAepCl" }, "outputs": [], "source": [ - "# (6-1) サーバの起動\n", + "# (5-1) Invoke server\n", "PORT=8092\n", "get_ipython().system_raw(f'python3 SoftVcServerFastAPI.py {PORT} colab >foo 2>&1 &')" ] @@ -319,7 +435,7 @@ "base_uri": "https://localhost:8080/" }, "id": "IiWSwDjQidc7", - "outputId": "2cab411c-f19c-45d6-9777-ca707f35da48" + "outputId": "aab57f3f-45b5-4d67-ea9c-d522178c0560" }, "outputs": [ { @@ -331,7 +447,7 @@ "Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n", "INFO: Will watch for changes in these directories: ['/content/voice-changer/demo']\n", "INFO: Uvicorn running on http://0.0.0.0:8092 (Press CTRL+C to quit)\n", - "INFO: Started reloader process [199] using StatReload\n", + "INFO: Started reloader process [281] using StatReload\n", "ENV: colab\n", "Removing weight norm...\n", "Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n", @@ -340,17 +456,31 @@ "Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n", "Using cache found in /root/.cache/torch/hub/bshall_acoustic-model_main\n", "Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n", - "INFO: Started server process [208]\n", + "INFO: Started server process [290]\n", "INFO: Waiting for application startup.\n", "INFO: Application startup complete.\n" ] } ], "source": [ - "# (6-2) サーバの起動確認 (Ctrl+Retで実行)\n", + "# (5-2) Check server status (Run with Ctrl+Ret)\n", "!cat foo" ] }, + { + "cell_type": "markdown", + "source": [ + "# Invoke Proxy\n", + "Starts a proxy to access the web server.\n", + "\n", + "Click on the URL displayed to open it and the application will open in a separate tab.\n", + "\n", + "Since it is a Colab, it will take some time to load (about 30 seconds)." + ], + "metadata": { + "id": "bHATIjjNuFFy" + } + }, { "cell_type": "code", "source": [ @@ -360,7 +490,7 @@ ], "metadata": { "id": "H8EpnHqDjknR", - "outputId": "4102a1bd-e552-4114-c5cc-be7f08e9ef61", + "outputId": "5a6611f0-fd18-4139-cbd9-85fc58401293", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -372,7 +502,7 @@ "output_type": "stream", "name": "stdout", "text": [ - "https://m97ojc7rz8g-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n" + "https://ayh2m6j6xsd-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n" ] } ] @@ -392,7 +522,7 @@ "colab": { "collapsed_sections": [], "provenance": [], - "authorship_tag": "ABX9TyNKyuSHnQ2YtV79Qu1lmq3X", + "authorship_tag": "ABX9TyPr96AMaFVFBXjmM/2mCqZO", "include_colab_link": true }, "gpuClass": "standard", @@ -405,7 +535,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "d1c9c8fc7db14c05ab0b749c06d28757": { + "fad16a0235aa4e5bb2b8de5fcb183243": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -420,14 +550,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f6791dc0da564f81b3176ec1f8033a0c", - "IPY_MODEL_5ea49bc3274b4fb3a00fae03c22bf28c", - "IPY_MODEL_66c0b6c9b8b24bcf8bcfce6cc9d66d16" + "IPY_MODEL_bc5c75fcb2e44548ab5aa978eeb9b8a6", + "IPY_MODEL_62c8e5c4546c4c17ad4125ddb0907d63", + "IPY_MODEL_52fed3e4db2747c2b70828a73073e909" ], - "layout": "IPY_MODEL_741f6105a3244cc39d07c87b61a6db70" + "layout": "IPY_MODEL_0fc41e46c8fa4853b88a2af2345be149" } }, - "f6791dc0da564f81b3176ec1f8033a0c": { + "bc5c75fcb2e44548ab5aa978eeb9b8a6": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -442,13 +572,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3fde19555e6a44dc94584bb5e3e45230", + "layout": "IPY_MODEL_ea2165bce13c4823bf8d9d77d4b63f49", "placeholder": "​", - "style": "IPY_MODEL_f6a1ecd1738841fc829e341e2ca8b8e2", + "style": "IPY_MODEL_8b51c58c91d3418c8d6dc619af78dafa", "value": "100%" } }, - "5ea49bc3274b4fb3a00fae03c22bf28c": { + "62c8e5c4546c4c17ad4125ddb0907d63": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -464,15 +594,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c2b0e85192e14f81b24bc60c2927367f", + "layout": "IPY_MODEL_2f511db422d5487fab18d16a8b61b585", "max": 378435957, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_d387b634dac34baeb70ad7ec290960f4", + "style": "IPY_MODEL_4c8d6b8d405e4ecf841ff782fd7a34cb", "value": 378435957 } }, - "66c0b6c9b8b24bcf8bcfce6cc9d66d16": { + "52fed3e4db2747c2b70828a73073e909": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -487,13 +617,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5786621a68b94255ab505105a4f567e4", + "layout": "IPY_MODEL_96954daa268a471cabedd434935aac23", "placeholder": "​", - "style": "IPY_MODEL_69c64360c23d4af9a18f7d197c792c0d", - "value": " 361M/361M [01:04<00:00, 1.73MB/s]" + "style": "IPY_MODEL_de6bcd48cc164bcd99825a250b70cb53", + "value": " 361M/361M [00:25<00:00, 7.62MB/s]" } }, - "741f6105a3244cc39d07c87b61a6db70": { + "0fc41e46c8fa4853b88a2af2345be149": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -545,7 +675,7 @@ "width": null } }, - "3fde19555e6a44dc94584bb5e3e45230": { + "ea2165bce13c4823bf8d9d77d4b63f49": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -597,7 +727,7 @@ "width": null } }, - "f6a1ecd1738841fc829e341e2ca8b8e2": { + "8b51c58c91d3418c8d6dc619af78dafa": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -612,7 +742,7 @@ "description_width": "" } }, - "c2b0e85192e14f81b24bc60c2927367f": { + "2f511db422d5487fab18d16a8b61b585": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -664,7 +794,7 @@ "width": null } }, - "d387b634dac34baeb70ad7ec290960f4": { + "4c8d6b8d405e4ecf841ff782fd7a34cb": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -680,7 +810,7 @@ "description_width": "" } }, - "5786621a68b94255ab505105a4f567e4": { + "96954daa268a471cabedd434935aac23": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -732,7 +862,7 @@ "width": null } }, - "69c64360c23d4af9a18f7d197c792c0d": { + "de6bcd48cc164bcd99825a250b70cb53": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -747,7 +877,7 @@ "description_width": "" } }, - "86662c7f8cf24bd2ab30a25e9376810a": { + "0239844e12e64b9981e9e78dcf57d0ef": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -762,14 +892,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ef214cd0a5ed4fc98a0252fe7626a784", - "IPY_MODEL_24ee783ae0c545bca6669d76b9edc659", - "IPY_MODEL_cdfc92c62f5a48628630516c50beb1e4" + "IPY_MODEL_2bf83e0402c2485b998b35ef783b3548", + "IPY_MODEL_f83daf5b13204f0a9b9dc1ee0271e6b0", + "IPY_MODEL_6d46c9a7d2714add9164ba6487739b57" ], - "layout": "IPY_MODEL_338b0dea05dd40df9df80aa9e03f6d2d" + "layout": "IPY_MODEL_a7cf75ed1bd94a238253fa071d5b3150" } }, - "ef214cd0a5ed4fc98a0252fe7626a784": { + "2bf83e0402c2485b998b35ef783b3548": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -784,13 +914,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d5304913d0c34891804dadc55619df14", + "layout": "IPY_MODEL_a50e5de44a474d6c863258fbd14d0401", "placeholder": "​", - "style": "IPY_MODEL_630430c86ad54fbdbca9ea979f6ee5af", + "style": "IPY_MODEL_c82e786218ed47ab80ae5173b690fffe", "value": "100%" } }, - "24ee783ae0c545bca6669d76b9edc659": { + "f83daf5b13204f0a9b9dc1ee0271e6b0": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -806,15 +936,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_afb96e0bbf2944948734ebc7536bc5b4", + "layout": "IPY_MODEL_28f5c855824b4a0eb899b196a2356b45", "max": 75329769, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_8523ea8056334830b8029b40f680c919", + "style": "IPY_MODEL_7956a1d6392b4b6fab81e098e54dfefc", "value": 75329769 } }, - "cdfc92c62f5a48628630516c50beb1e4": { + "6d46c9a7d2714add9164ba6487739b57": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -829,13 +959,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bd733abfa27d49e79205a8c8b83a7d56", + "layout": "IPY_MODEL_19a1448c941249eb81d0d9bcdb3c6739", "placeholder": "​", - "style": "IPY_MODEL_bdc3ec183e854783bd5872dfbab2b1d1", - "value": " 71.8M/71.8M [00:07<00:00, 9.65MB/s]" + "style": "IPY_MODEL_6f41807bbd764265879de3b83d247ad4", + "value": " 71.8M/71.8M [00:02<00:00, 34.0MB/s]" } }, - "338b0dea05dd40df9df80aa9e03f6d2d": { + "a7cf75ed1bd94a238253fa071d5b3150": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -887,7 +1017,7 @@ "width": null } }, - "d5304913d0c34891804dadc55619df14": { + "a50e5de44a474d6c863258fbd14d0401": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -939,7 +1069,7 @@ "width": null } }, - "630430c86ad54fbdbca9ea979f6ee5af": { + "c82e786218ed47ab80ae5173b690fffe": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -954,7 +1084,7 @@ "description_width": "" } }, - "afb96e0bbf2944948734ebc7536bc5b4": { + "28f5c855824b4a0eb899b196a2356b45": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1006,7 +1136,7 @@ "width": null } }, - "8523ea8056334830b8029b40f680c919": { + "7956a1d6392b4b6fab81e098e54dfefc": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1022,7 +1152,7 @@ "description_width": "" } }, - "bd733abfa27d49e79205a8c8b83a7d56": { + "19a1448c941249eb81d0d9bcdb3c6739": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1074,7 +1204,7 @@ "width": null } }, - "bdc3ec183e854783bd5872dfbab2b1d1": { + "6f41807bbd764265879de3b83d247ad4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1089,7 +1219,7 @@ "description_width": "" } }, - "60c0c9c8c8d7408e8225218063184b30": { + "1b89d116460746cb90858d77ff65cffa": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1104,14 +1234,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8993b4dc621a4d9d86f34816c35ba586", - "IPY_MODEL_31a006a5b20749428459f18d20c244c4", - "IPY_MODEL_350d51f1af7d41018fe8e7a95d51e5d6" + "IPY_MODEL_6d7b8dd5f7cc41329cfc590141f3927a", + "IPY_MODEL_878fc80433d84cb98b607629c8fecf08", + "IPY_MODEL_cc841ac2ac954db78989389970890582" ], - "layout": "IPY_MODEL_82aa6f8faed74f1baa2e5673ce78a7e0" + "layout": "IPY_MODEL_bb701d96133442c6b3aa70ddc585d01c" } }, - "8993b4dc621a4d9d86f34816c35ba586": { + "6d7b8dd5f7cc41329cfc590141f3927a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1126,13 +1256,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5c5ba05e0cca4810991903b7f37af96b", + "layout": "IPY_MODEL_e38d4376820c40de97d97c78b119cd4f", "placeholder": "​", - "style": "IPY_MODEL_65a95487f3594da2924ed12340032eaf", + "style": "IPY_MODEL_59323fae26814e03bad57866d75b76f1", "value": "100%" } }, - "31a006a5b20749428459f18d20c244c4": { + "878fc80433d84cb98b607629c8fecf08": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1148,15 +1278,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_21dd227254924fcc8d75d9187a393f11", + "layout": "IPY_MODEL_b5b11bfc014c4a76a421012fb096e8e5", "max": 57562349, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_1cf612f6c11847d89721cab4b6d88223", + "style": "IPY_MODEL_5da63d520023436aa71101b5561a5744", "value": 57562349 } }, - "350d51f1af7d41018fe8e7a95d51e5d6": { + "cc841ac2ac954db78989389970890582": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1171,13 +1301,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7e031f847c4d4c9f80dd80d8041f16e8", + "layout": "IPY_MODEL_3040cd18ddae4853801274c3f10d17b0", "placeholder": "​", - "style": "IPY_MODEL_a2d3c4edf54d41a5b65f28d967b1be77", - "value": " 54.9M/54.9M [00:08<00:00, 4.66MB/s]" + "style": "IPY_MODEL_e533525617774461991000eb56899c0b", + "value": " 54.9M/54.9M [00:02<00:00, 19.4MB/s]" } }, - "82aa6f8faed74f1baa2e5673ce78a7e0": { + "bb701d96133442c6b3aa70ddc585d01c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1229,7 +1359,7 @@ "width": null } }, - "5c5ba05e0cca4810991903b7f37af96b": { + "e38d4376820c40de97d97c78b119cd4f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1281,7 +1411,7 @@ "width": null } }, - "65a95487f3594da2924ed12340032eaf": { + "59323fae26814e03bad57866d75b76f1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1296,7 +1426,7 @@ "description_width": "" } }, - "21dd227254924fcc8d75d9187a393f11": { + "b5b11bfc014c4a76a421012fb096e8e5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1348,7 +1478,7 @@ "width": null } }, - "1cf612f6c11847d89721cab4b6d88223": { + "5da63d520023436aa71101b5561a5744": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1364,7 +1494,7 @@ "description_width": "" } }, - "7e031f847c4d4c9f80dd80d8041f16e8": { + "3040cd18ddae4853801274c3f10d17b0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1416,7 +1546,7 @@ "width": null } }, - "a2d3c4edf54d41a5b65f28d967b1be77": { + "e533525617774461991000eb56899c0b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",