mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
WIP: supprt vrc
This commit is contained in:
parent
c9aaf751f0
commit
1fd0422b43
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
# avoiding parse arg error in RVC
|
||||
sys.argv = ["MMVCServerSIO.py"]
|
||||
|
||||
if sys.platform.startswith('darwin'):
|
||||
@ -13,7 +14,6 @@ if sys.platform.startswith('darwin'):
|
||||
else:
|
||||
sys.path.append("RVC")
|
||||
|
||||
print("RVC 3")
|
||||
import io
|
||||
from dataclasses import dataclass, asdict, field
|
||||
from functools import reduce
|
||||
@ -74,30 +74,8 @@ class RVC:
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
|
||||
self.device = torch.device("cuda", index=self.settings.gpu)
|
||||
self.settings.configFile = config
|
||||
# self.hps = utils.get_hparams_from_file(config)
|
||||
# self.settings.speakers = self.hps.spk
|
||||
|
||||
# hubert model
|
||||
try:
|
||||
# hubert_path = self.params["hubert"]
|
||||
# useHubertOnnx = self.params["useHubertOnnx"]
|
||||
# self.useHubertOnnx = useHubertOnnx
|
||||
|
||||
# if useHubertOnnx == True:
|
||||
# ort_options = onnxruntime.SessionOptions()
|
||||
# ort_options.intra_op_num_threads = 8
|
||||
# self.hubert_onnx = onnxruntime.InferenceSession(
|
||||
# HUBERT_ONNX_MODEL_PATH,
|
||||
# providers=providers
|
||||
# )
|
||||
# else:
|
||||
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
# [hubert_path],
|
||||
# suffix="",
|
||||
# )
|
||||
# model = models[0]
|
||||
# model.eval()
|
||||
# self.hubert_model = model.cpu()
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="",)
|
||||
model = models[0]
|
||||
model.eval()
|
||||
@ -117,7 +95,6 @@ class RVC:
|
||||
if pyTorch_model_file != None:
|
||||
cpt = torch.load(pyTorch_model_file, map_location="cpu")
|
||||
self.tgt_sr = cpt["config"][-1]
|
||||
# n_spk = cpt["config"][-3]
|
||||
is_half = False
|
||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
||||
net_g.eval()
|
||||
@ -126,14 +103,6 @@ class RVC:
|
||||
self.net_g = net_g
|
||||
self.net_g = self.net_g.to(self.device)
|
||||
|
||||
# self.net_g = SynthesizerTrn(
|
||||
# self.hps.data.filter_length // 2 + 1,
|
||||
# self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
# **self.hps.model
|
||||
# )
|
||||
# self.net_g.eval()
|
||||
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
ort_options = onnxruntime.SessionOptions()
|
||||
@ -201,20 +170,6 @@ class RVC:
|
||||
# return 24000
|
||||
|
||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
||||
# import wave
|
||||
# filename = "testc2.wav"
|
||||
# if os.path.exists(filename):
|
||||
# print("[IORecorder] delete old analyze file.", filename)
|
||||
# os.remove(filename)
|
||||
# fo = wave.open(filename, 'wb')
|
||||
# fo.setnchannels(1)
|
||||
# fo.setsampwidth(2)
|
||||
# # fo.setframerate(24000)
|
||||
# fo.setframerate(self.tgt_sr)
|
||||
# fo.writeframes(newData.astype(np.int16))
|
||||
# fo.close()
|
||||
|
||||
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
||||
newData = newData.astype(np.float32) / 32768.0
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
@ -267,9 +222,6 @@ class RVC:
|
||||
audio = data[0]
|
||||
convertSize = data[1]
|
||||
vol = data[2]
|
||||
# from scipy.io import wavfile
|
||||
# # wavfile.write("testa.wav", self.tgt_sr, audio * 32768.0)
|
||||
# wavfile.write("testa.wav", 24000, audio * 32768.0)
|
||||
|
||||
filename = "testc2.wav"
|
||||
audio = load_audio(filename, 16000)
|
||||
@ -309,57 +261,6 @@ class RVC:
|
||||
del self.onnx_session
|
||||
|
||||
|
||||
# def resize_f0(x, target_len):
|
||||
# source = np.array(x)
|
||||
# source[source < 0.001] = np.nan
|
||||
# target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
|
||||
# res = np.nan_to_num(target)
|
||||
# return res
|
||||
|
||||
|
||||
# def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||||
# if p_len is None:
|
||||
# p_len = wav_numpy.shape[0] // hop_length
|
||||
# f0, t = pw.dio(
|
||||
# wav_numpy.astype(np.double),
|
||||
# fs=sampling_rate,
|
||||
# f0_ceil=800,
|
||||
# frame_period=1000 * hop_length / sampling_rate,
|
||||
# )
|
||||
# f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
||||
# for index, pitch in enumerate(f0):
|
||||
# f0[index] = round(pitch, 1)
|
||||
# return resize_f0(f0, p_len)
|
||||
|
||||
|
||||
# def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||||
# if p_len is None:
|
||||
# p_len = wav_numpy.shape[0] // hop_length
|
||||
# f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
||||
|
||||
# for index, pitch in enumerate(f0):
|
||||
# f0[index] = round(pitch, 1)
|
||||
# return resize_f0(f0, p_len)
|
||||
|
||||
|
||||
# def get_hubert_content_layer9(hmodel, wav_16k_tensor):
|
||||
# feats = wav_16k_tensor
|
||||
# if feats.dim() == 2: # double channels
|
||||
# feats = feats.mean(-1)
|
||||
# assert feats.dim() == 1, feats.dim()
|
||||
# feats = feats.view(1, -1)
|
||||
# padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
# inputs = {
|
||||
# "source": feats.to(wav_16k_tensor.device),
|
||||
# "padding_mask": padding_mask.to(wav_16k_tensor.device),
|
||||
# "output_layer": 9, # layer 9
|
||||
# }
|
||||
# with torch.no_grad():
|
||||
# logits = hmodel.extract_features(**inputs)
|
||||
|
||||
# return logits[0].transpose(1, 2)
|
||||
|
||||
|
||||
import ffmpeg
|
||||
|
||||
|
||||
|
@ -49,35 +49,25 @@ class VoiceChanger():
|
||||
|
||||
self.modelType = getModelType()
|
||||
print("[VoiceChanger] activate model type:", self.modelType)
|
||||
print("RVC!!! 1")
|
||||
if self.modelType == "MMVCv15":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
|
||||
self.voiceChanger = MMVCv15()
|
||||
elif self.modelType == "MMVCv13":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
||||
self.voiceChanger = MMVCv13()
|
||||
elif self.modelType == "so-vits-svc-40v2":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
|
||||
self.voiceChanger = SoVitsSvc40v2(params)
|
||||
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
|
||||
self.voiceChanger = SoVitsSvc40(params)
|
||||
elif self.modelType == "DDSP-SVC":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
|
||||
self.voiceChanger = DDSP_SVC(params)
|
||||
elif self.modelType == "RVC":
|
||||
print("RVC!!! 22222222222")
|
||||
from voice_changer.RVC.RVC import RVC
|
||||
print("RVC!!! 2")
|
||||
self.voiceChanger = RVC(params)
|
||||
|
||||
else:
|
||||
print("RVC!!! 3")
|
||||
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
||||
self.voiceChanger = MMVCv13()
|
||||
|
||||
@ -220,10 +210,6 @@ class VoiceChanger():
|
||||
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
|
||||
print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
|
||||
|
||||
print(
|
||||
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
|
||||
print(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
|
||||
|
||||
powered_cur = cur_overlap * self.np_cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user