WIP: supprt vrc

This commit is contained in:
wataru 2023-04-06 02:38:50 +09:00
parent c9aaf751f0
commit 1fd0422b43
2 changed files with 1 additions and 114 deletions

View File

@ -1,6 +1,7 @@
import sys
import os
# avoiding parse arg error in RVC
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith('darwin'):
@ -13,7 +14,6 @@ if sys.platform.startswith('darwin'):
else:
sys.path.append("RVC")
print("RVC 3")
import io
from dataclasses import dataclass, asdict, field
from functools import reduce
@ -74,30 +74,8 @@ class RVC:
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
self.device = torch.device("cuda", index=self.settings.gpu)
self.settings.configFile = config
# self.hps = utils.get_hparams_from_file(config)
# self.settings.speakers = self.hps.spk
# hubert model
try:
# hubert_path = self.params["hubert"]
# useHubertOnnx = self.params["useHubertOnnx"]
# self.useHubertOnnx = useHubertOnnx
# if useHubertOnnx == True:
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
# self.hubert_onnx = onnxruntime.InferenceSession(
# HUBERT_ONNX_MODEL_PATH,
# providers=providers
# )
# else:
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
# [hubert_path],
# suffix="",
# )
# model = models[0]
# model.eval()
# self.hubert_model = model.cpu()
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="",)
model = models[0]
model.eval()
@ -117,7 +95,6 @@ class RVC:
if pyTorch_model_file != None:
cpt = torch.load(pyTorch_model_file, map_location="cpu")
self.tgt_sr = cpt["config"][-1]
# n_spk = cpt["config"][-3]
is_half = False
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
net_g.eval()
@ -126,14 +103,6 @@ class RVC:
self.net_g = net_g
self.net_g = self.net_g.to(self.device)
# self.net_g = SynthesizerTrn(
# self.hps.data.filter_length // 2 + 1,
# self.hps.train.segment_size // self.hps.data.hop_length,
# **self.hps.model
# )
# self.net_g.eval()
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
# ONNXモデル生成
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
@ -201,20 +170,6 @@ class RVC:
# return 24000
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
# import wave
# filename = "testc2.wav"
# if os.path.exists(filename):
# print("[IORecorder] delete old analyze file.", filename)
# os.remove(filename)
# fo = wave.open(filename, 'wb')
# fo.setnchannels(1)
# fo.setsampwidth(2)
# # fo.setframerate(24000)
# fo.setframerate(self.tgt_sr)
# fo.writeframes(newData.astype(np.int16))
# fo.close()
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
newData = newData.astype(np.float32) / 32768.0
if hasattr(self, "audio_buffer"):
@ -267,9 +222,6 @@ class RVC:
audio = data[0]
convertSize = data[1]
vol = data[2]
# from scipy.io import wavfile
# # wavfile.write("testa.wav", self.tgt_sr, audio * 32768.0)
# wavfile.write("testa.wav", 24000, audio * 32768.0)
filename = "testc2.wav"
audio = load_audio(filename, 16000)
@ -309,57 +261,6 @@ class RVC:
del self.onnx_session
# def resize_f0(x, target_len):
# source = np.array(x)
# source[source < 0.001] = np.nan
# target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
# res = np.nan_to_num(target)
# return res
# def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
# if p_len is None:
# p_len = wav_numpy.shape[0] // hop_length
# f0, t = pw.dio(
# wav_numpy.astype(np.double),
# fs=sampling_rate,
# f0_ceil=800,
# frame_period=1000 * hop_length / sampling_rate,
# )
# f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
# for index, pitch in enumerate(f0):
# f0[index] = round(pitch, 1)
# return resize_f0(f0, p_len)
# def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
# if p_len is None:
# p_len = wav_numpy.shape[0] // hop_length
# f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
# for index, pitch in enumerate(f0):
# f0[index] = round(pitch, 1)
# return resize_f0(f0, p_len)
# def get_hubert_content_layer9(hmodel, wav_16k_tensor):
# feats = wav_16k_tensor
# if feats.dim() == 2: # double channels
# feats = feats.mean(-1)
# assert feats.dim() == 1, feats.dim()
# feats = feats.view(1, -1)
# padding_mask = torch.BoolTensor(feats.shape).fill_(False)
# inputs = {
# "source": feats.to(wav_16k_tensor.device),
# "padding_mask": padding_mask.to(wav_16k_tensor.device),
# "output_layer": 9, # layer 9
# }
# with torch.no_grad():
# logits = hmodel.extract_features(**inputs)
# return logits[0].transpose(1, 2)
import ffmpeg

View File

@ -49,35 +49,25 @@ class VoiceChanger():
self.modelType = getModelType()
print("[VoiceChanger] activate model type:", self.modelType)
print("RVC!!! 1")
if self.modelType == "MMVCv15":
print("RVC!!! 2")
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
self.voiceChanger = MMVCv15()
elif self.modelType == "MMVCv13":
print("RVC!!! 2")
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13()
elif self.modelType == "so-vits-svc-40v2":
print("RVC!!! 2")
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
self.voiceChanger = SoVitsSvc40v2(params)
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
print("RVC!!! 2")
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
self.voiceChanger = SoVitsSvc40(params)
elif self.modelType == "DDSP-SVC":
print("RVC!!! 2")
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
self.voiceChanger = DDSP_SVC(params)
elif self.modelType == "RVC":
print("RVC!!! 22222222222")
from voice_changer.RVC.RVC import RVC
print("RVC!!! 2")
self.voiceChanger = RVC(params)
else:
print("RVC!!! 3")
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13()
@ -220,10 +210,6 @@ class VoiceChanger():
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
print(
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
print(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
powered_cur = cur_overlap * self.np_cur_strength
powered_result = powered_prev + powered_cur