mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
merge master
This commit is contained in:
commit
21b9a9fe24
@ -66,6 +66,7 @@ class EnumInferenceTypes(Enum):
|
||||
pyTorchRVCv2Nono = "pyTorchRVCv2Nono"
|
||||
pyTorchWebUI = "pyTorchWebUI"
|
||||
pyTorchWebUINono = "pyTorchWebUINono"
|
||||
pyTorchVoRASbeta = "pyTorchVoRASbeta"
|
||||
onnxRVC = "onnxRVC"
|
||||
onnxRVCNono = "onnxRVCNono"
|
||||
|
||||
|
@ -37,7 +37,30 @@ class RVCModelSlotGenerator(ModelSlotGenerator):
|
||||
cpt = torch.load(slot.modelFile, map_location="cpu")
|
||||
config_len = len(cpt["config"])
|
||||
|
||||
if config_len == 18:
|
||||
print(cpt["version"])
|
||||
if cpt["version"] == "voras_beta":
|
||||
slot.f0 = True if cpt["f0"] == 1 else False
|
||||
slot.modelType = EnumInferenceTypes.pyTorchVoRASbeta.value
|
||||
slot.embChannels = 768
|
||||
slot.embOutputLayer = (
|
||||
cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9
|
||||
)
|
||||
slot.useFinalProj = False
|
||||
|
||||
slot.embedder = cpt["embedder_name"]
|
||||
if slot.embedder.endswith("768"):
|
||||
slot.embedder = slot.embedder[:-3]
|
||||
|
||||
if slot.embedder == EnumEmbedderTypes.hubert.value:
|
||||
slot.embedder = EnumEmbedderTypes.hubert.value
|
||||
elif slot.embedder == EnumEmbedderTypes.contentvec.value:
|
||||
slot.embedder = EnumEmbedderTypes.contentvec.value
|
||||
elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
|
||||
slot.embedder = EnumEmbedderTypes.hubert_jp.value
|
||||
else:
|
||||
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
|
||||
|
||||
elif config_len == 18:
|
||||
# Original RVC
|
||||
slot.f0 = True if cpt["f0"] == 1 else False
|
||||
version = cpt.get("version", "v1")
|
||||
|
@ -8,7 +8,7 @@ from voice_changer.RVC.inferencer.RVCInferencerv2 import RVCInferencerv2
|
||||
from voice_changer.RVC.inferencer.RVCInferencerv2Nono import RVCInferencerv2Nono
|
||||
from voice_changer.RVC.inferencer.WebUIInferencer import WebUIInferencer
|
||||
from voice_changer.RVC.inferencer.WebUIInferencerNono import WebUIInferencerNono
|
||||
|
||||
from voice_changer.RVC.inferencer.VorasInferencebeta import VoRASInferencer
|
||||
|
||||
class InferencerManager:
|
||||
currentInferencer: Inferencer | None = None
|
||||
@ -37,6 +37,8 @@ class InferencerManager:
|
||||
return RVCInferencerNono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2 or inferencerType == EnumInferenceTypes.pyTorchRVCv2.value:
|
||||
return RVCInferencerv2().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchVoRASbeta or inferencerType == EnumInferenceTypes.pyTorchVoRASbeta.value:
|
||||
return VoRASInferencer().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono or inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono.value:
|
||||
return RVCInferencerv2Nono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUI or inferencerType == EnumInferenceTypes.pyTorchWebUI.value:
|
||||
|
39
server/voice_changer/RVC/inferencer/VorasInferencebeta.py
Normal file
39
server/voice_changer/RVC/inferencer/VorasInferencebeta.py
Normal file
@ -0,0 +1,39 @@
|
||||
import torch
|
||||
from torch import device
|
||||
|
||||
from const import EnumInferenceTypes
|
||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||
from .voras_beta.models import Synthesizer
|
||||
|
||||
|
||||
class VoRASInferencer(Inferencer):
|
||||
def loadModel(self, file: str, gpu: device):
|
||||
super().setProps(EnumInferenceTypes.pyTorchVoRASbeta, file, False, gpu)
|
||||
|
||||
dev = DeviceManager.get_instance().getDevice(gpu)
|
||||
self.isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
|
||||
|
||||
cpt = torch.load(file, map_location="cpu")
|
||||
model = Synthesizer(**cpt["params"])
|
||||
|
||||
model.eval()
|
||||
model.load_state_dict(cpt["weight"], strict=False)
|
||||
model.remove_weight_norm()
|
||||
model.change_speaker(0)
|
||||
|
||||
model = model.to(dev)
|
||||
|
||||
self.model = model
|
||||
print("load model comprete")
|
||||
return self
|
||||
|
||||
def infer(
|
||||
self,
|
||||
feats: torch.Tensor,
|
||||
pitch_length: torch.Tensor,
|
||||
pitch: torch.Tensor,
|
||||
pitchf: torch.Tensor,
|
||||
sid: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
return self.model.infer(feats, pitch_length, pitch, pitchf, sid)
|
165
server/voice_changer/RVC/inferencer/voras_beta/commons.py
Normal file
165
server/voice_changer/RVC/inferencer/voras_beta/commons.py
Normal file
@ -0,0 +1,165 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
r = x[i, :, idx_str:idx_end]
|
||||
ret[i, :, :r.size(1)] = r
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments2(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
r = x[i, idx_str:idx_end]
|
||||
ret[i, :r.size(0)] = r
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths, segment_size=4, ids_str=None):
|
||||
b, d, t = x.size()
|
||||
if ids_str is None:
|
||||
ids_str = torch.zeros([b]).to(device=x.device, dtype=x_lengths.dtype)
|
||||
ids_str_max = torch.maximum(torch.zeros_like(x_lengths).to(device=x_lengths.device ,dtype=x_lengths.dtype), x_lengths - segment_size + 1 - ids_str)
|
||||
ids_str += (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
61
server/voice_changer/RVC/inferencer/voras_beta/config.py
Normal file
61
server/voice_changer/RVC/inferencer/voras_beta/config.py
Normal file
@ -0,0 +1,61 @@
|
||||
from typing import *
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TrainConfigTrain(BaseModel):
|
||||
log_interval: int
|
||||
seed: int
|
||||
epochs: int
|
||||
learning_rate: float
|
||||
betas: List[float]
|
||||
eps: float
|
||||
batch_size: int
|
||||
fp16_run: bool
|
||||
lr_decay: float
|
||||
segment_size: int
|
||||
init_lr_ratio: int
|
||||
warmup_epochs: int
|
||||
c_mel: int
|
||||
c_kl: float
|
||||
|
||||
|
||||
class TrainConfigData(BaseModel):
|
||||
max_wav_value: float
|
||||
sampling_rate: int
|
||||
filter_length: int
|
||||
hop_length: int
|
||||
win_length: int
|
||||
n_mel_channels: int
|
||||
mel_fmin: float
|
||||
mel_fmax: Any
|
||||
|
||||
|
||||
class TrainConfigModel(BaseModel):
|
||||
emb_channels: int
|
||||
inter_channels: int
|
||||
n_layers: int
|
||||
upsample_rates: List[int]
|
||||
use_spectral_norm: bool
|
||||
gin_channels: int
|
||||
spk_embed_dim: int
|
||||
|
||||
|
||||
class TrainConfig(BaseModel):
|
||||
version: Literal["voras"] = "voras"
|
||||
train: TrainConfigTrain
|
||||
data: TrainConfigData
|
||||
model: TrainConfigModel
|
||||
|
||||
|
||||
class DatasetMetaItem(BaseModel):
|
||||
gt_wav: str
|
||||
co256: str
|
||||
f0: Optional[str]
|
||||
f0nsf: Optional[str]
|
||||
speaker_id: int
|
||||
|
||||
|
||||
class DatasetMetadata(BaseModel):
|
||||
files: Dict[str, DatasetMetaItem]
|
||||
# mute: DatasetMetaItem
|
238
server/voice_changer/RVC/inferencer/voras_beta/models.py
Normal file
238
server/voice_changer/RVC/inferencer/voras_beta/models.py
Normal file
@ -0,0 +1,238 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding
|
||||
from .modules import (ConvNext2d, HarmonicEmbedder, IMDCTSymExpHead,
|
||||
LoRALinear1d, SnakeFilter, WaveBlock)
|
||||
|
||||
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
sr2sr = {
|
||||
"24k": 24000,
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
class GeneratorVoras(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
emb_channels,
|
||||
inter_channels,
|
||||
gin_channels,
|
||||
n_layers,
|
||||
sr,
|
||||
hop_length,
|
||||
):
|
||||
super(GeneratorVoras, self).__init__()
|
||||
self.n_layers = n_layers
|
||||
self.emb_pitch = HarmonicEmbedder(768, inter_channels, gin_channels, 16, 15) # # pitch 256
|
||||
self.plinear = LoRALinear1d(inter_channels, inter_channels, gin_channels, r=8)
|
||||
self.glinear = weight_norm(nn.Conv1d(gin_channels, inter_channels, 1))
|
||||
self.resblocks = nn.ModuleList()
|
||||
self.init_linear = LoRALinear1d(emb_channels, inter_channels, gin_channels, r=4)
|
||||
for _ in range(self.n_layers):
|
||||
self.resblocks.append(WaveBlock(inter_channels, gin_channels, [9] * 2, [1] * 2, [1, 9], 2, r=4))
|
||||
self.head = IMDCTSymExpHead(inter_channels, gin_channels, hop_length, padding="center", sample_rate=sr)
|
||||
self.post = SnakeFilter(4, 8, 9, 2, eps=1e-5)
|
||||
|
||||
def forward(self, x, pitchf, x_mask, g):
|
||||
x = self.init_linear(x, g) + self.plinear(self.emb_pitch(pitchf, g), g) + self.glinear(g)
|
||||
for i in range(self.n_layers):
|
||||
x = self.resblocks[i](x, x_mask, g)
|
||||
x = x * x_mask
|
||||
x = self.head(x, g)
|
||||
x = self.post(x)
|
||||
return torch.tanh(x)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.plinear.remove_weight_norm()
|
||||
remove_weight_norm(self.glinear)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
self.init_linear.remove_weight_norm()
|
||||
self.head.remove_weight_norm()
|
||||
self.post.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.plinear.fix_speaker(g)
|
||||
self.init_linear.fix_speaker(g)
|
||||
for l in self.resblocks:
|
||||
l.fix_speaker(g)
|
||||
self.head.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.plinear.unfix_speaker(g)
|
||||
self.init_linear.unfix_speaker(g)
|
||||
for l in self.resblocks:
|
||||
l.unfix_speaker(g)
|
||||
self.head.unfix_speaker(g)
|
||||
|
||||
|
||||
class Synthesizer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
segment_size,
|
||||
n_fft,
|
||||
hop_length,
|
||||
inter_channels,
|
||||
n_layers,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
emb_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.segment_size = segment_size
|
||||
self.n_fft = n_fft
|
||||
self.hop_length = hop_length
|
||||
self.inter_channels = inter_channels
|
||||
self.n_layers = n_layers
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.gin_channels = gin_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.sr = sr
|
||||
|
||||
self.dec = GeneratorVoras(
|
||||
emb_channels,
|
||||
inter_channels,
|
||||
gin_channels,
|
||||
n_layers,
|
||||
sr,
|
||||
hop_length
|
||||
)
|
||||
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print(
|
||||
"gin_channels:",
|
||||
gin_channels,
|
||||
"self.spk_embed_dim:",
|
||||
self.spk_embed_dim,
|
||||
"emb_channels:",
|
||||
emb_channels,
|
||||
)
|
||||
self.speaker = None
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
def change_speaker(self, sid: int):
|
||||
if self.speaker is not None:
|
||||
g = self.emb_g(torch.from_numpy(np.array(self.speaker))).unsqueeze(-1)
|
||||
self.dec.unfix_speaker(g)
|
||||
g = self.emb_g(torch.from_numpy(np.array(sid))).unsqueeze(-1)
|
||||
self.dec.fix_speaker(g)
|
||||
self.speaker = sid
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds
|
||||
):
|
||||
g = self.emb_g(ds).unsqueeze(-1)
|
||||
x = torch.transpose(phone, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
|
||||
x_slice, ids_slice = commons.rand_slice_segments(
|
||||
x, phone_lengths, self.segment_size
|
||||
)
|
||||
pitchf_slice = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
|
||||
o = self.dec(x_slice, pitchf_slice, mask_slice, g)
|
||||
return o, ids_slice, x_mask, g
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
x = torch.transpose(phone, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], nsff0, x_mask, g)
|
||||
return o, x_mask, (None, None, None, None)
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
self.init_kernel_size = upsample_rates[-1] * 3
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
N = len(upsample_rates)
|
||||
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
|
||||
self.convs = nn.ModuleList()
|
||||
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
|
||||
self.convs.append(
|
||||
ConvNext2d(
|
||||
final_dim // (2 ** (N - i)),
|
||||
final_dim // (2 ** (N - i - 1)),
|
||||
gin_channels,
|
||||
(u*3, 1),
|
||||
(u, 1),
|
||||
4,
|
||||
r=2 + i//2
|
||||
)
|
||||
)
|
||||
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (n_pad, 0), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
x = torch.flip(x, dims=[2])
|
||||
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
|
||||
x = self.init_conv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = torch.flip(x, dims=[2])
|
||||
fmap.append(x)
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
x = l(x, g)
|
||||
fmap.append(x)
|
||||
|
||||
x = F.pad(x, [0, 0, 2, 0], mode="constant")
|
||||
x = self.conv_post(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
|
||||
discs = [
|
||||
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
|
||||
]
|
||||
self.ups = np.prod(upsample_rates)
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat, g):
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(y, g)
|
||||
y_d_g, fmap_g = d(y_hat, g)
|
||||
y_d_rs.append(y_d_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_rs.append(fmap_r)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
496
server/voice_changer/RVC/inferencer/voras_beta/modules.py
Normal file
496
server/voice_changer/RVC/inferencer/voras_beta/modules.py
Normal file
@ -0,0 +1,496 @@
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import scipy
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class HarmonicEmbedder(nn.Module):
|
||||
def __init__(self, num_embeddings, embedding_dim, gin_channels, num_head, num_harmonic=0, f0_min=50., f0_max=1100., device="cuda"):
|
||||
super(HarmonicEmbedder, self).__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.num_head = num_head
|
||||
self.num_harmonic = num_harmonic
|
||||
|
||||
f0_mel_min = np.log(1 + f0_min / 700)
|
||||
f0_mel_max = np.log(1 + f0_max * (1 + num_harmonic) / 700)
|
||||
self.sequence = torch.from_numpy(np.linspace(f0_mel_min, f0_mel_max, num_embeddings-2))
|
||||
self.emb_layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
self.linear_q = Conv1d(gin_channels, num_head * (1 + num_harmonic), 1)
|
||||
self.weight = None
|
||||
|
||||
def forward(self, x, g):
|
||||
b, l = x.size()
|
||||
non_zero = (x != 0.).to(dtype=torch.long).unsqueeze(1)
|
||||
mel = torch.log(1 + x / 700).unsqueeze(1)
|
||||
harmonies = torch.arange(1 + self.num_harmonic, device=x.device, dtype=x.dtype).view(1, 1 + self.num_harmonic, 1) + 1.
|
||||
ix = torch.searchsorted(self.sequence.to(x.device), mel * harmonies).to(x.device) + 1
|
||||
ix = ix * non_zero
|
||||
emb = self.emb_layer(ix).transpose(1, 3).reshape(b, self.num_head, self.embedding_dim // self.num_head, 1 + self.num_harmonic, l)
|
||||
if self.weight is None:
|
||||
weight = torch.nn.functional.softmax(self.linear_q(g).reshape(b, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
|
||||
else:
|
||||
weight = self.weight
|
||||
res = torch.sum(emb * weight, dim=3).reshape(b, self.embedding_dim, l)
|
||||
return res
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.weight = torch.nn.functional.softmax(self.linear_q(g).reshape(1, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.weight = None
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class DilatedCausalConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
|
||||
super(DilatedCausalConv1d, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.flip(x, [2])
|
||||
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
|
||||
size = x.shape[2] // self.stride
|
||||
x = self.conv(x)[:, :, :size]
|
||||
x = torch.flip(x, [2])
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class CausalConvTranspose1d(nn.Module):
|
||||
"""
|
||||
padding = 0, dilation = 1のとき
|
||||
|
||||
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
|
||||
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
|
||||
output_paddingいらないね
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
|
||||
super(CausalConvTranspose1d, self).__init__()
|
||||
kernel_size = kernel_rate * stride
|
||||
self.trim_size = (kernel_rate - 1) * stride
|
||||
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return x[:, :, :-self.trim_size]
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class LoRALinear1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
self.speaker_fixed = False
|
||||
|
||||
def forward(self, x, g):
|
||||
x_ = self.main_fc(x)
|
||||
if not self.speaker_fixed:
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
l = torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
|
||||
x_ = x_ + l
|
||||
return x_
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.speaker_fixed = True
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
|
||||
self.main_fc.weight.data.add_(weight)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.speaker_fixed = False
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
|
||||
self.main_fc.weight.data.sub_(weight)
|
||||
|
||||
|
||||
class LoRALinear2d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
self.speaker_fixed = False
|
||||
|
||||
def forward(self, x, g):
|
||||
x_ = self.main_fc(x)
|
||||
if not self.speaker_fixed:
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
l = torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
|
||||
x_ = x_ + l
|
||||
return x_
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
def fix_speaker(self, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
|
||||
self.main_fc.weight.data.add_(weight)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
|
||||
self.main_fc.weight.data.sub_(weight)
|
||||
|
||||
|
||||
class MBConv2d(torch.nn.Module):
|
||||
"""
|
||||
Causal MBConv2D
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(MBConv2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.dwconv = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.pwnorm = LayerNorm(in_channels)
|
||||
self.dwnorm = LayerNorm(inner_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.pwnorm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwnorm(x)
|
||||
x = self.dwconv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.pwconv2(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
return x
|
||||
|
||||
class ConvNext2d(torch.nn.Module):
|
||||
"""
|
||||
Causal ConvNext Block
|
||||
stride = 1 only
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(ConvNext2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.act = nn.GELU()
|
||||
self.norm = LayerNorm(in_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x, g)
|
||||
x = self.act(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.dwconv)
|
||||
|
||||
|
||||
class WaveBlock(torch.nn.Module):
|
||||
def __init__(self, inner_channels, gin_channels, kernel_sizes, strides, dilations, extend_rate, r):
|
||||
super(WaveBlock, self).__init__()
|
||||
norm_f = weight_norm
|
||||
extend_channels = int(inner_channels * extend_rate)
|
||||
self.dconvs = nn.ModuleList()
|
||||
self.p1convs = nn.ModuleList()
|
||||
self.p2convs = nn.ModuleList()
|
||||
self.norms = nn.ModuleList()
|
||||
self.act = nn.GELU()
|
||||
|
||||
# self.ses = nn.ModuleList()
|
||||
# self.norms = []
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
|
||||
self.p1convs.append(LoRALinear1d(inner_channels, extend_channels, gin_channels, r))
|
||||
self.p2convs.append(LoRALinear1d(extend_channels, inner_channels, gin_channels, r))
|
||||
self.norms.append(LayerNorm(inner_channels))
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x *= x_mask
|
||||
for i in range(len(self.dconvs)):
|
||||
residual = x.clone()
|
||||
x = self.dconvs[i](x)
|
||||
x = self.norms[i](x)
|
||||
x *= x_mask
|
||||
x = self.p1convs[i](x, g)
|
||||
x = self.act(x)
|
||||
x = self.p2convs[i](x, g)
|
||||
x = residual + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.p1convs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.p2convs:
|
||||
c.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
for c in self.p1convs:
|
||||
c.fix_speaker(g)
|
||||
for c in self.p2convs:
|
||||
c.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
for c in self.p1convs:
|
||||
c.unfix_speaker(g)
|
||||
for c in self.p2convs:
|
||||
c.unfix_speaker(g)
|
||||
|
||||
|
||||
class SnakeFilter(torch.nn.Module):
|
||||
"""
|
||||
Adaptive filter using snakebeta
|
||||
"""
|
||||
def __init__(self, channels, groups, kernel_size, num_layers, eps=1e-6):
|
||||
super(SnakeFilter, self).__init__()
|
||||
self.eps = eps
|
||||
self.num_layers = num_layers
|
||||
inner_channels = channels * groups
|
||||
self.init_conv = DilatedCausalConv1d(1, inner_channels, kernel_size)
|
||||
self.dconvs = torch.nn.ModuleList()
|
||||
self.pconvs = torch.nn.ModuleList()
|
||||
self.post_conv = DilatedCausalConv1d(inner_channels+1, 1, kernel_size, bias=False)
|
||||
|
||||
for i in range(self.num_layers):
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, kernel_size, stride=1, groups=inner_channels, dilation=kernel_size ** (i + 1)))
|
||||
self.pconvs.append(weight_norm(Conv1d(inner_channels, inner_channels, 1, groups=groups)))
|
||||
self.snake_alpha = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
|
||||
self.snake_beta = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
y = x.clone()
|
||||
x = self.init_conv(x)
|
||||
for i in range(self.num_layers):
|
||||
# snake activation
|
||||
x = self.dconvs[i](x)
|
||||
x = self.pconvs[i](x)
|
||||
x = x + (1.0 / torch.clip(self.snake_beta.unsqueeze(0).unsqueeze(-1), min=self.eps)) * torch.pow(torch.sin(x * self.snake_alpha.unsqueeze(0).unsqueeze(-1)), 2)
|
||||
x = torch.cat([x, y], 1)
|
||||
x = self.post_conv(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.init_conv.remove_weight_norm()
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.pconvs:
|
||||
remove_weight_norm(c)
|
||||
self.post_conv.remove_weight_norm()
|
||||
|
||||
"""
|
||||
https://github.com/charactr-platform/vocos/blob/main/vocos/heads.py
|
||||
"""
|
||||
class FourierHead(nn.Module):
|
||||
"""Base class for inverse fourier modules."""
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
raise NotImplementedError("Subclasses must implement the forward method.")
|
||||
|
||||
|
||||
class IMDCT(nn.Module):
|
||||
"""
|
||||
Inverse Modified Discrete Cosine Transform (IMDCT) module.
|
||||
|
||||
Args:
|
||||
frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(self, frame_len: int, padding: str = "same"):
|
||||
super().__init__()
|
||||
if padding not in ["center", "same"]:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
self.padding = padding
|
||||
self.frame_len = frame_len * 2
|
||||
N = frame_len
|
||||
n0 = (N + 1) / 2
|
||||
window = torch.from_numpy(scipy.signal.cosine(N * 2)).float()
|
||||
self.register_buffer("window", window)
|
||||
|
||||
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
|
||||
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
|
||||
self.register_buffer("pre_twiddle", torch.view_as_real(pre_twiddle))
|
||||
self.register_buffer("post_twiddle", torch.view_as_real(post_twiddle))
|
||||
|
||||
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
|
||||
|
||||
Args:
|
||||
X (Tensor): Input MDCT coefficients of shape (B, N, L), where B is the batch size,
|
||||
L is the number of frames, and N is the number of frequency bins.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
|
||||
"""
|
||||
X = X.transpose(1, 2)
|
||||
B, L, N = X.shape
|
||||
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
|
||||
Y[..., :N] = X
|
||||
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
|
||||
y = torch.fft.ifft(Y * torch.view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1)
|
||||
y = torch.real(y * torch.view_as_complex(self.post_twiddle).expand(y.shape)) * np.sqrt(N) * np.sqrt(2)
|
||||
result = y * self.window.expand(y.shape)
|
||||
output_size = (1, (L + 1) * N)
|
||||
audio = torch.nn.functional.fold(
|
||||
result.transpose(1, 2),
|
||||
output_size=output_size,
|
||||
kernel_size=(1, self.frame_len),
|
||||
stride=(1, self.frame_len // 2),
|
||||
)[:, 0, 0, :]
|
||||
|
||||
if self.padding == "center":
|
||||
pad = self.frame_len // 2
|
||||
elif self.padding == "same":
|
||||
pad = self.frame_len // 4
|
||||
else:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
|
||||
audio = audio[:, pad:-pad]
|
||||
return audio.unsqueeze(1)
|
||||
|
||||
|
||||
class IMDCTSymExpHead(FourierHead):
|
||||
"""
|
||||
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
||||
|
||||
Args:
|
||||
dim (int): Hidden dimension of the model.
|
||||
mdct_frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
||||
based on perceptual scaling. Defaults to None.
|
||||
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim: int, gin_channels: int, mdct_frame_len: int, padding: str = "same", sample_rate: int = 24000,
|
||||
):
|
||||
super().__init__()
|
||||
out_dim = mdct_frame_len
|
||||
self.dconv = DilatedCausalConv1d(dim, dim, 5, 1, dim, 1)
|
||||
self.pconv1 = LoRALinear1d(dim, dim * 2, gin_channels, 2)
|
||||
self.pconv2 = LoRALinear1d(dim * 2, out_dim, gin_channels, 2)
|
||||
self.act = torch.nn.GELU()
|
||||
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
||||
|
||||
if sample_rate is not None:
|
||||
# optionally init the last layer following mel-scale
|
||||
m_max = _hz_to_mel(sample_rate // 2)
|
||||
m_pts = torch.linspace(0, m_max, out_dim)
|
||||
f_pts = _mel_to_hz(m_pts)
|
||||
scale = 1 - (f_pts / f_pts.max())
|
||||
|
||||
with torch.no_grad():
|
||||
self.pconv2.main_fc.weight.mul_(scale.view(-1, 1, 1))
|
||||
|
||||
def forward(self, x: torch.Tensor, g: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the IMDCTSymExpHead module.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
x = self.dconv(x)
|
||||
x = self.pconv1(x, g)
|
||||
x = self.act(x)
|
||||
x = self.pconv2(x, g)
|
||||
x = symexp(x)
|
||||
x = torch.clip(x, min=-1e2, max=1e2) # safeguard to prevent excessively large magnitudes
|
||||
audio = self.imdct(x)
|
||||
return audio
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dconv.remove_weight_norm()
|
||||
self.pconv1.remove_weight_norm()
|
||||
self.pconv2.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.pconv1.fix_speaker(g)
|
||||
self.pconv2.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.pconv1.unfix_speaker(g)
|
||||
self.pconv2.unfix_speaker(g)
|
||||
|
||||
def symexp(x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
207
server/voice_changer/RVC/inferencer/voras_beta/transforms.py
Normal file
207
server/voice_changer/RVC/inferencer/voras_beta/transforms.py
Normal file
@ -0,0 +1,207 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
286
server/voice_changer/RVC/inferencer/voras_beta/utils.py
Normal file
286
server/voice_changer/RVC/inferencer/voras_beta/utils.py
Normal file
@ -0,0 +1,286 @@
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import socket
|
||||
import sys
|
||||
|
||||
import ffmpeg
|
||||
import matplotlib
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
from scipy.io.wavfile import read
|
||||
from torch.nn import functional as F
|
||||
|
||||
from modules.shared import ROOT_DIR
|
||||
|
||||
from .config import TrainConfig
|
||||
|
||||
matplotlib.use("Agg")
|
||||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
|
||||
class AWP:
|
||||
"""
|
||||
Fast AWP
|
||||
https://www.kaggle.com/code/junkoda/fast-awp
|
||||
"""
|
||||
def __init__(self, model, optimizer, *, adv_param='weight',
|
||||
adv_lr=0.01, adv_eps=0.01):
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.adv_param = adv_param
|
||||
self.adv_lr = adv_lr
|
||||
self.adv_eps = adv_eps
|
||||
self.backup = {}
|
||||
|
||||
def perturb(self):
|
||||
"""
|
||||
Perturb model parameters for AWP gradient
|
||||
Call before loss and loss.backward()
|
||||
"""
|
||||
self._save() # save model parameters
|
||||
self._attack_step() # perturb weights
|
||||
|
||||
def _attack_step(self):
|
||||
e = 1e-6
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad and param.grad is not None and self.adv_param in name:
|
||||
grad = self.optimizer.state[param]['exp_avg']
|
||||
norm_grad = torch.norm(grad)
|
||||
norm_data = torch.norm(param.detach())
|
||||
|
||||
if norm_grad != 0 and not torch.isnan(norm_grad):
|
||||
# Set lower and upper limit in change
|
||||
limit_eps = self.adv_eps * param.detach().abs()
|
||||
param_min = param.data - limit_eps
|
||||
param_max = param.data + limit_eps
|
||||
|
||||
# Perturb along gradient
|
||||
# w += (adv_lr * |w| / |grad|) * grad
|
||||
param.data.add_(grad, alpha=(self.adv_lr * (norm_data + e) / (norm_grad + e)))
|
||||
|
||||
# Apply the limit to the change
|
||||
param.data.clamp_(param_min, param_max)
|
||||
|
||||
def _save(self):
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad and param.grad is not None and self.adv_param in name:
|
||||
if name not in self.backup:
|
||||
self.backup[name] = param.clone().detach()
|
||||
else:
|
||||
self.backup[name].copy_(param.data)
|
||||
|
||||
def restore(self):
|
||||
"""
|
||||
Restore model parameter to correct position; AWP do not perturbe weights, it perturb gradients
|
||||
Call after loss.backward(), before optimizer.step()
|
||||
"""
|
||||
for name, param in self.model.named_parameters():
|
||||
if name in self.backup:
|
||||
param.data.copy_(self.backup[name])
|
||||
|
||||
|
||||
def load_audio(file: str, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # Prevent small white copy path head and tail with spaces and " and return
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.float32).flatten()
|
||||
|
||||
|
||||
def find_empty_port():
|
||||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
s.bind(("", 0))
|
||||
s.listen(1)
|
||||
port = s.getsockname()[1]
|
||||
s.close()
|
||||
return port
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
f"shape-{k}-mismatch|need-{state_dict[k].shape}|get-{saved_state_dict[k].shape}"
|
||||
)
|
||||
if saved_state_dict[k].dim() == 2: # NOTE: check is this ok?
|
||||
# for embedded input 256 <==> 768
|
||||
# this achieves we can continue training from original's pretrained checkpoints when using embedder that 768-th dim output etc.
|
||||
if saved_state_dict[k].dtype == torch.half:
|
||||
new_state_dict[k] = (
|
||||
F.interpolate(
|
||||
saved_state_dict[k].float().unsqueeze(0).unsqueeze(0),
|
||||
size=state_dict[k].shape,
|
||||
mode="bilinear",
|
||||
)
|
||||
.half()
|
||||
.squeeze(0)
|
||||
.squeeze(0)
|
||||
)
|
||||
else:
|
||||
new_state_dict[k] = (
|
||||
F.interpolate(
|
||||
saved_state_dict[k].unsqueeze(0).unsqueeze(0),
|
||||
size=state_dict[k].shape,
|
||||
mode="bilinear",
|
||||
)
|
||||
.squeeze(0)
|
||||
.squeeze(0)
|
||||
)
|
||||
print(
|
||||
"interpolated new_state_dict",
|
||||
k,
|
||||
"from",
|
||||
saved_state_dict[k].shape,
|
||||
"to",
|
||||
new_state_dict[k].shape,
|
||||
)
|
||||
else:
|
||||
raise KeyError
|
||||
except Exception as e:
|
||||
# print(traceback.format_exc())
|
||||
print(f"{k} is not in the checkpoint")
|
||||
print("error: %s" % e)
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
print("Loaded model weights")
|
||||
|
||||
epoch = checkpoint_dict["epoch"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if optimizer is not None and load_opt == 1:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
print("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, epoch))
|
||||
return model, optimizer, learning_rate, epoch
|
||||
|
||||
|
||||
def save_state(model, optimizer, learning_rate, epoch, checkpoint_path):
|
||||
print(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
epoch, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"epoch": epoch,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
filelist = glob.glob(os.path.join(dir_path, regex))
|
||||
if len(filelist) == 0:
|
||||
return None
|
||||
filelist.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
filepath = filelist[-1]
|
||||
return filepath
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
|
||||
|
||||
def load_config(training_dir: str, sample_rate: int, emb_channels: int):
|
||||
if emb_channels == 256:
|
||||
config_path = os.path.join(ROOT_DIR, "configs", f"{sample_rate}.json")
|
||||
else:
|
||||
config_path = os.path.join(
|
||||
ROOT_DIR, "configs", f"{sample_rate}-{emb_channels}.json"
|
||||
)
|
||||
config_save_path = os.path.join(training_dir, "config.json")
|
||||
|
||||
shutil.copyfile(config_path, config_save_path)
|
||||
|
||||
return TrainConfig.parse_file(config_save_path)
|
@ -3,6 +3,7 @@ from typing import Any
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda.amp import autocast
|
||||
from Exceptions import (
|
||||
DeviceCannotSupportHalfPrecisionException,
|
||||
DeviceChangingException,
|
||||
@ -118,10 +119,6 @@ class Pipeline(object):
|
||||
|
||||
# tensor型調整
|
||||
feats = audio_pad
|
||||
if self.isHalf is True:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
@ -129,6 +126,7 @@ class Pipeline(object):
|
||||
|
||||
# embedding
|
||||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||
with autocast(enabled=self.isHalf):
|
||||
try:
|
||||
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
|
||||
if torch.isnan(feats).all():
|
||||
@ -167,10 +165,8 @@ class Pipeline(object):
|
||||
|
||||
# recover silient font
|
||||
npy = np.concatenate([np.zeros([npyOffset, npy.shape[1]]).astype("float32"), npy])
|
||||
if self.isHalf is True:
|
||||
npy = npy.astype("float16")
|
||||
|
||||
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats
|
||||
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
if protect < 0.5 and search_index:
|
||||
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
@ -207,6 +203,7 @@ class Pipeline(object):
|
||||
# 推論実行
|
||||
try:
|
||||
with torch.no_grad():
|
||||
with autocast(enabled=self.isHalf):
|
||||
audio1 = (
|
||||
torch.clip(
|
||||
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0].to(dtype=torch.float32),
|
||||
|
Loading…
Reference in New Issue
Block a user