This commit is contained in:
wataru 2023-04-19 13:35:37 +09:00
parent 253697f5d6
commit 2b8236a9b2
4 changed files with 194 additions and 18 deletions

95
README_dev_en.md Normal file
View File

@ -0,0 +1,95 @@
## For Developper
[English](/README_dev_ja.md)
## Prerequisit
- Linux or WSL2 (not tested for Mac )
- Anaconda
## Preparation
1. Create anaconda virtual environment
```
$ conda create -n vcclient-dev python=3.10
$ conda activate vcclient-dev
```
2. clone repository
```
$ git clone https://github.com/w-okada/voice-changer.git
$ cd voice-changer
```
## For Server Developer
1. Clone support VC repository
```
cd server
git clone https://github.com/isletennos/MMVC_Client.git MMVC_Client_v13
git clone https://github.com/isletennos/MMVC_Client.git MMVC_Client_v15
git clone https://github.com/StarStringStudio/so-vits-svc.git so-vits-svc-40
git clone https://github.com/StarStringStudio/so-vits-svc.git so-vits-svc-40v2
cd so-vits-svc-40v2 && git checkout 08c70ff3d2f7958820b715db2a2180f4b7f92f8d && cd -
git clone https://github.com/yxlllc/DDSP-SVC.git DDSP-SVC
git clone https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI.git RVC
```
2. Copy weights
copy weights of emmbedding or vocoder. These file path can be set as parameter when invoke server.
(1) hubert_base.pt
download from [here](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main)
(2) content vec
download ContentVec_legacy_500 from [here](https://github.com/auspicious3000/contentvec)
(3) hubert_soft
download from [here](https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt)
(4) vocorder
download nsf_hifigan_20221211.zip from [here](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1) and expand it.
3. Install requirements
```
$ pip install -r requirements.txt
```
4. Run server
Run server with the below command. You can replace the path to each weight.
```
$ python3 MMVCServerSIO.py -p 18888 --https true \
--content_vec_500 weights/checkpoint_best_legacy_500.pt \
--hubert_base weights/hubert_base.pt \
--hubert_soft weights/hubert-soft-0d54a1f4.pt \
--nsf_hifigan weights/nsf_hifigan/model
```
5. Enjoy developing.
## For Client Developer
1. Import modules and initial build
```
cd client
cd lib
npm install
npm run build:dev
cd ../demo
npm install
npm run build:dev
```
2. Enjoy developing.

95
README_dev_ja.md Normal file
View File

@ -0,0 +1,95 @@
## 開発者向け
[English](/README_dev_en.md)
## 前提
- Linux or WSL2 (not tested for Mac )
- Anaconda
## 準備
1. Anaconda の仮想環境を作成する
```
$ conda create -n vcclient-dev python=3.10
$ conda activate vcclient-dev
```
2. リポジトリをクローンする
```
$ git clone https://github.com/w-okada/voice-changer.git
$ cd voice-changer
```
## サーバ開発者向け
1. 外部のリポジトリをサーバ内にクローンする
```
cd server
git clone https://github.com/isletennos/MMVC_Client.git MMVC_Client_v13
git clone https://github.com/isletennos/MMVC_Client.git MMVC_Client_v15
git clone https://github.com/StarStringStudio/so-vits-svc.git so-vits-svc-40
git clone https://github.com/StarStringStudio/so-vits-svc.git so-vits-svc-40v2
cd so-vits-svc-40v2 && git checkout 08c70ff3d2f7958820b715db2a2180f4b7f92f8d && cd -
git clone https://github.com/yxlllc/DDSP-SVC.git DDSP-SVC
git clone https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI.git RVC
```
2. 外部のモデルの重みを配置する
copy weights of emmbedding or vocoder. These file path can be set as parameter when invoke server.
(1) hubert_base.pt
download from [here](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main)
(2) content vec
download ContentVec_legacy_500 from [here](https://github.com/auspicious3000/contentvec)
(3) hubert_soft
download from [here](https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt)
(4) vocorder
download nsf_hifigan_20221211.zip from [here](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1) and expand it.
3. モジュールをインストールする
```
$ pip install -r requirements.txt
```
4. サーバを起動する
Run server with the below command. You can replace the path to each weight.
```
$ python3 MMVCServerSIO.py -p 18888 --https true \
--content_vec_500 weights/checkpoint_best_legacy_500.pt \
--hubert_base weights/hubert_base.pt \
--hubert_soft weights/hubert-soft-0d54a1f4.pt \
--nsf_hifigan weights/nsf_hifigan/model
```
5. 開発しましょう
## クライアント開発者向け
1. モジュールをインストールして、一度ビルドします
```
cd client
cd lib
npm install
npm run build:dev
cd ../demo
npm install
npm run build:dev
```
2. 開発しましょう

View File

@ -122,6 +122,8 @@ Clone this repository and use it. Setting up WSL2 is essential for Windows. Addi
[Explanation video on installing WSL2 and Anaconda](https://youtu.be/fba9Zhsukqw)
To run on Anaconda venv, see [server developer's guide](README_dev_en.md)
## Real-time performance
Conversion is almost instantaneous when using GPU.

View File

@ -1,25 +1,8 @@
# uvicorn==0.21.1
# pyOpenSSL==23.0.0
# numpy==1.23.5
# #torch==2.0.0
# torch==1.13.1
# resampy==0.4.2
# matplotlib==3.7.1
# librosa==0.10.0.post1
# pyworld==0.3.2
# python-socketio==5.7.2
# fastapi==0.94.1
# onnxruntime-gpu==1.14.1
# python-multipart==0.0.6
# fairseq==0.12.2
# # apt-get update
# # apt-get install -y emacs mlocate wget git curl gcc g++ make unzip
# # wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
# # bash Anaconda3-2022.10-Linux-x86_64.sh
uvicorn==0.21.1
pyOpenSSL==23.1.1
numpy==1.23.5
@ -42,3 +25,4 @@ gin==0.1.6
gin_config==0.5.0
einops==0.6.0
local_attention==1.8.5
websockets==11.0.2