WIP: support pitch-less and 768

This commit is contained in:
wataru 2023-04-23 06:19:48 +09:00
parent ef025efd30
commit 2fa33aad8d
4 changed files with 251 additions and 23 deletions

View File

@ -31,6 +31,8 @@ import pyworld as pw
from voice_changer.RVC.custom_vc_infer_pipeline import VC
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from .models import SynthesizerTrnMsNSFsid as SynthesizerTrnMs768NSFsid
from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCH_LESS, RVC_MODEL_TYPE_NORMAL_768, RVC_MODEL_TYPE_UNKNOWN
from fairseq import checkpoint_utils
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@ -42,6 +44,7 @@ class ModelSlot():
featureFile: str = ""
indexFile: str = ""
defaultTrans: int = ""
modelType: int = RVC_MODEL_TYPE_UNKNOWN
@dataclass
@ -116,7 +119,8 @@ class RVC:
onnxModelFile=props["files"]["onnxModelFilename"],
featureFile=props["files"]["featureFilename"],
indexFile=props["files"]["indexFilename"],
defaultTrans=params["trans"]
defaultTrans=params["trans"],
modelType=RVC_MODEL_TYPE_UNKNOWN
)
print("[Voice Changer] RVC loading... slot:", self.tmp_slot)
@ -150,9 +154,50 @@ class RVC:
# PyTorchモデル生成
if pyTorchModelFile != None and pyTorchModelFile != "":
cpt = torch.load(pyTorchModelFile, map_location="cpu")
'''
ノーマル or Pitchレス判定 コンフィグのpsamplingrateの形状から判断
ノーマル
[1025, 32, 192, 192, 768, 2, 6, 3, 0, '1', [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 6, 2, 2, 2], 512, [16, 16, 4, 4, 4], 109, 256, 48000]
ピッチレス
[1025, 32, 192, 192, 768, 2, 6, 3, 0, '1', [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2],  512, [16, 16, 4, 4],109, 256, 40000]
12番目の要素upsamplingrateの数で判定4: ピッチレス, 5:ノーマル
256 or 768判定 config全体の形状
ーマル256
[1025, 32, 192, 192, 768, 2, 6, 3, 0, '1', [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 6, 2, 2, 2], 512, [16, 16, 4, 4, 4], 109, 256, 48000]
ノーマル 768対応
[1025, 32, 192, 192, 768, 2, 6, 3, 0, '1', [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 6, 2, 2, 2], 512, [16, 16, 4, 4, 4], 109, 256, 768, 48000]
config全体の長さで判定 config全体の形状
'''
config_len = len(cpt["config"])
upsamplingRateDims = len(cpt["config"][12])
if config_len == 18 and upsamplingRateDims == 4:
print("[Voice Changer] RVC Model Type: Pitch-Less")
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_PITCH_LESS
elif config_len == 18 and upsamplingRateDims == 5:
print("[Voice Changer] RVC Model Type: Normal")
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_NORMAL
elif config_len == 19:
print("[Voice Changer] RVC Model Type: Normal_768")
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_NORMAL_768
else:
print("[Voice Changer] RVC Model Type: UNKNOWN")
self.settings.modelSlots[slot].modelType = RVC_MODEL_TYPE_UNKNOWN
self.settings.modelSamplingRate = cpt["config"][-1]
# net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=self.is_half)
if self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_NORMAL:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=self.is_half)
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_PITCH_LESS:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif self.settings.modelSlots[slot].modelType == RVC_MODEL_TYPE_NORMAL_768:
net_g = SynthesizerTrnMs768NSFsid(**cpt["params"], is_half=self.is_half)
else:
print("unknwon")
net_g.eval()
net_g.load_state_dict(cpt["weight"], strict=False)
if self.is_half:
@ -340,12 +385,9 @@ class RVC:
if_f0 = 1
f0_file = None
if self.settings.silenceFront == 0:
modelType = self.settings.modelSlots[self.currentSlot].modelType
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=0)
else:
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=self.settings.extraConvertSize / self.settings.modelSamplingRate)
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file, silence_front=self.settings.extraConvertSize / self.settings.modelSamplingRate, modelType=modelType)
result = audio_out * np.sqrt(vol)

View File

@ -0,0 +1,4 @@
RVC_MODEL_TYPE_NORMAL = 0
RVC_MODEL_TYPE_PITCH_LESS = 1
RVC_MODEL_TYPE_NORMAL_768 = 2
RVC_MODEL_TYPE_UNKNOWN = 99

View File

@ -10,6 +10,7 @@ import pyworld
import os
import traceback
import faiss
from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCH_LESS, RVC_MODEL_TYPE_NORMAL_768
class VC(object):
@ -82,7 +83,7 @@ class VC(object):
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak # 1-0
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate): # ,file_index,file_big_npy
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, modelType): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if (self.is_half == True):
feats = feats.half()
@ -93,16 +94,25 @@ class VC(object):
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_PITCH_LESS:
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9, # layer 9
}
else:
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_PITCH_LESS:
feats = model.final_proj(logits[0])
else:
feats = logits[0]
if (isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0):
npy = feats[0].cpu().numpy()
@ -126,7 +136,9 @@ class VC(object):
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
# audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
if modelType == RVC_MODEL_TYPE_NORMAL or modelType == RVC_MODEL_TYPE_NORMAL_768:
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
else:
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
del feats, p_len, padding_mask
@ -136,7 +148,7 @@ class VC(object):
times[2] += (t2 - t1)
return audio1
def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None, silence_front=0):
def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None, silence_front=0, modelType: int = RVC_MODEL_TYPE_NORMAL):
if (file_big_npy != "" and file_index != "" and os.path.exists(file_big_npy) == True and os.path.exists(file_index) == True and index_rate != 0):
try:
index = faiss.read_index(file_index)
@ -166,11 +178,11 @@ class VC(object):
t2 = ttime()
times[1] += (t2 - t1)
if self.t_pad_tgt == 0:
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch, pitchf[:,
t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate))
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, modelType))
else:
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch, pitchf[:,
t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, modelType)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
del pitch, pitchf, sid

View File

@ -0,0 +1,170 @@
import math
import torch
from torch import nn
import numpy as np
from infer_pack.models import sr2sr, GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock
from infer_pack import commons, attentions
class TextEncoder(nn.Module):
def __init__(
self,
out_channels,
hidden_channels,
filter_channels,
emb_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
f0=True,
):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.emb_channels = emb_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
if f0 == True:
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
self.encoder = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, phone, pitch, lengths):
if pitch == None:
x = self.emb_phone(phone)
else:
x = self.emb_phone(phone) + self.emb_pitch(pitch)
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
x = self.lrelu(x)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
x.dtype
)
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class SynthesizerTrnMsNSFsid(nn.Module):
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
spk_embed_dim,
gin_channels,
emb_channels,
sr,
**kwargs
):
super().__init__()
if type(sr) == type("strr"):
sr = sr2sr[sr]
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.emb_channels = emb_channels
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
emb_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = GeneratorNSF(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
sr=sr,
is_half=kwargs["is_half"],
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
def forward(
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
): # 这里ds是id[bs,1]
# print(1,pitch.shape)#[bs,t]
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
z_slice, ids_slice = commons.rand_slice_segments(
z, y_lengths, self.segment_size
)
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
# print(-2,pitchf.shape,z_slice.shape)
o = self.dec(z_slice, pitchf, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)