restrcture

This commit is contained in:
wataru 2023-01-01 02:08:56 +09:00
parent a2a12f54ad
commit 60db7877e2
12 changed files with 9 additions and 157 deletions

View File

@ -21,7 +21,6 @@ import uvicorn
import socketio import socketio
from typing import Callable from typing import Callable
from mods.VoiceChanger import VoiceChanger
from mods.ssl import create_self_signed_cert from mods.ssl import create_self_signed_cert
from voice_changer.VoiceChangerManager import VoiceChangerManager from voice_changer.VoiceChangerManager import VoiceChangerManager
from sio.MMVC_SocketIOApp import MMVC_SocketIOApp from sio.MMVC_SocketIOApp import MMVC_SocketIOApp
@ -29,11 +28,6 @@ from sio.MMVC_SocketIOApp import MMVC_SocketIOApp
from restapi.MMVC_Rest import MMVC_Rest from restapi.MMVC_Rest import MMVC_Rest
def setupArgParser(): def setupArgParser():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("-t", type=str, default="MMVC", parser.add_argument("-t", type=str, default="MMVC",

View File

@ -1,106 +0,0 @@
import torch
from scipy.io.wavfile import write, read
import numpy as np
import traceback
import utils
import commons
from models import SynthesizerTrn
from text.symbols import symbols
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
from mel_processing import spectrogram_torch
from text import text_to_sequence, cleaned_text_to_sequence
class VoiceChanger():
def __init__(self, config, model):
self.hps = utils.get_hparams_from_file(config)
self.net_g = SynthesizerTrn(
len(symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model)
self.net_g.eval()
self.gpu_num = torch.cuda.device_count()
utils.load_checkpoint(model, self.net_g, None)
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
text_norm = commons.intersperse(text_norm, 0)
self.text_norm = torch.LongTensor(text_norm)
self.audio_buffer = torch.zeros(1, 0)
self.prev_audio = np.zeros(1)
self.mps_enabled = getattr(
torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
print(
f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
def destroy(self):
del self.net_g
def on_request(self, gpu, srcId, dstId, timestamp, prefixChunkSize, wav):
unpackedData = wav
convertSize = unpackedData.shape[0] + (prefixChunkSize * 512)
try:
audio = torch.FloatTensor(unpackedData.astype(np.float32))
audio_norm = audio / self.hps.data.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
self.audio_buffer = torch.cat(
[self.audio_buffer, audio_norm], axis=1)
audio_norm = self.audio_buffer[:, -convertSize:]
self.audio_buffer = audio_norm
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
sid = torch.LongTensor([int(srcId)])
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
# if gpu < 0 or (self.gpu_num == 0 and not self.mps_enabled):
if gpu < 0 or self.gpu_num == 0:
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
x.cpu() for x in data]
sid_tgt1 = torch.LongTensor([dstId]).cpu()
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[
0][0, 0].data * self.hps.data.max_wav_value).cpu().float().numpy()
# elif self.mps_enabled == True: # MPS doesnt support aten::weight_norm_interface, and PYTORCH_ENABLE_MPS_FALLBACK=1 cause a big dely.
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
# x.to("mps") for x in data]
# sid_tgt1 = torch.LongTensor([dstId]).to("mps")
# audio1 = (self.net_g.to("mps").voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[
# 0][0, 0].data * self.hps.data.max_wav_value).cpu().float().numpy()
else:
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
x.cuda(gpu) for x in data]
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[
0][0, 0].data * self.hps.data.max_wav_value).cpu().float().numpy()
# if len(self.prev_audio) > unpackedData.shape[0]:
# prevLastFragment = self.prev_audio[-unpackedData.shape[0]:]
# curSecondLastFragment = audio1[-unpackedData.shape[0]*2:-unpackedData.shape[0]]
# print("prev, cur", prevLastFragment.shape, curSecondLastFragment.shape)
# self.prev_audio = audio1
# print("self.prev_audio", self.prev_audio.shape)
audio1 = audio1[-unpackedData.shape[0]*2:]
except Exception as e:
print("VC PROCESSING!!!! EXCEPTION!!!", e)
print(traceback.format_exc())
audio1 = audio1.astype(np.int16)
return audio1

View File

@ -1,36 +0,0 @@
import whisper
import numpy as np
import torchaudio
from scipy.io.wavfile import write
_MODELS = {
"tiny": "/whisper/tiny.pt",
"base": "/whisper/base.pt",
"small": "/whisper/small.pt",
"medium": "/whisper/medium.pt",
}
class Whisper():
def __init__(self):
self.storedSizeFromTry = 0
def loadModel(self, model):
# self.model = whisper.load_model(_MODELS[model], device="cpu")
self.model = whisper.load_model(_MODELS[model])
self.data = np.zeros(1).astype(np.float)
def addData(self, unpackedData):
self.data = np.concatenate([self.data, unpackedData], 0)
def transcribe(self, audio):
received_data_file = "received_data.wav"
write(received_data_file, 24000, self.data.astype(np.int16))
source, sr = torchaudio.load(received_data_file)
target = torchaudio.functional.resample(source, 24000, 16000)
result = self.model.transcribe(received_data_file)
print("WHISPER1:::", result["text"])
print("WHISPER2:::", result["segments"])
self.data = np.zeros(1).astype(np.float)
return result["text"]

View File

@ -5,16 +5,16 @@ from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse from fastapi.responses import JSONResponse
from mods.Trainer_Speakers import mod_get_speakers from restapi.mods.Trainer_Speakers import mod_get_speakers
from mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log from restapi.mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log
from mods.Trainer_Model import mod_get_model, mod_delete_model from restapi.mods.Trainer_Model import mod_get_model, mod_delete_model
from mods.Trainer_Models import mod_get_models from restapi.mods.Trainer_Models import mod_get_models
from mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting from restapi.mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting
from mods.Trainer_Speaker_Voice import mod_get_speaker_voice from restapi.mods.Trainer_Speaker_Voice import mod_get_speaker_voice
from mods.Trainer_Speaker_Voices import mod_get_speaker_voices from restapi.mods.Trainer_Speaker_Voices import mod_get_speaker_voices
from mods.Trainer_Speaker import mod_delete_speaker from restapi.mods.Trainer_Speaker import mod_delete_speaker
from dataclasses import dataclass from dataclasses import dataclass
INFO_DIR = "info" INFO_DIR = "info"

View File

@ -1,5 +1,5 @@
import shutil import shutil
from mods.Trainer_MultiSpeakerSetting import MULTI_SPEAKER_SETTING_PATH from restapi.mods.Trainer_MultiSpeakerSetting import MULTI_SPEAKER_SETTING_PATH
def mod_delete_speaker(speaker:str): def mod_delete_speaker(speaker:str):
shutil.rmtree(f"MMVC_Trainer/dataset/textful/{speaker}") shutil.rmtree(f"MMVC_Trainer/dataset/textful/{speaker}")