mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
WIP: integrate vcs to new gui 4
This commit is contained in:
parent
d83590dc35
commit
68b1c8953e
@ -2,7 +2,6 @@ import sys
|
||||
import os
|
||||
from data.ModelSlot import SoVitsSvc40ModelSlot
|
||||
|
||||
from voice_changer.utils.LoadModelParams import LoadModelParams, LoadModelParams2
|
||||
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
||||
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
||||
|
||||
@ -16,7 +15,6 @@ if sys.platform.startswith("darwin"):
|
||||
else:
|
||||
sys.path.append("so-vits-svc-40")
|
||||
|
||||
import io
|
||||
from dataclasses import dataclass, asdict, field
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -56,89 +54,66 @@ class SoVitsSvc40Settings:
|
||||
extraConvertSize: int = 1024 * 32
|
||||
clusterInferRatio: float = 0.1
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str | None = ""
|
||||
onnxModelFile: str | None = ""
|
||||
configFile: str = ""
|
||||
|
||||
speakers: dict[str, int] = field(default_factory=lambda: {})
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
|
||||
intData = ["gpu", "dstId", "tran", "predictF0"]
|
||||
floatData = ["noiseScale", "silentThreshold", "clusterInferRatio"]
|
||||
strData = ["framework", "f0Detector"]
|
||||
strData = ["f0Detector"]
|
||||
|
||||
|
||||
class SoVitsSvc40:
|
||||
audio_buffer: AudioInOut | None = None
|
||||
|
||||
def __init__(self, params: VoiceChangerParams):
|
||||
def __init__(self, params: VoiceChangerParams, slotInfo: SoVitsSvc40ModelSlot):
|
||||
print("[Voice Changer] [so-vits-svc40] Creating instance ")
|
||||
self.settings = SoVitsSvc40Settings()
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
|
||||
self.raw_path = io.BytesIO()
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.prevVol = 0
|
||||
self.params = params
|
||||
print("[Voice Changer] so-vits-svc40 initialization:", params)
|
||||
|
||||
# def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
|
||||
def loadModel(self, props: LoadModelParams):
|
||||
params = props.params
|
||||
self.settings.configFile = params["files"]["soVitsSvc40Config"]
|
||||
self.hps = utils.get_hparams_from_file(self.settings.configFile)
|
||||
self.settings.speakers = self.hps.spk
|
||||
|
||||
modelFile = params["files"]["soVitsSvc40Model"]
|
||||
if modelFile.endswith(".onnx"):
|
||||
self.settings.pyTorchModelFile = None
|
||||
self.settings.onnxModelFile = modelFile
|
||||
else:
|
||||
self.settings.pyTorchModelFile = modelFile
|
||||
self.settings.onnxModelFile = None
|
||||
|
||||
clusterTorchModel = params["files"]["soVitsSvc40Cluster"] if "soVitsSvc40Cluster" in params["files"] else None
|
||||
|
||||
content_vec_path = self.params.content_vec_500
|
||||
content_vec_onnx_path = self.params.content_vec_500_onnx
|
||||
content_vec_onnx_on = self.params.content_vec_500_onnx_on
|
||||
hubert_base_path = self.params.hubert_base
|
||||
|
||||
# hubert model
|
||||
try:
|
||||
if os.path.exists(content_vec_path) is False:
|
||||
content_vec_path = hubert_base_path
|
||||
|
||||
if content_vec_onnx_on is True:
|
||||
providers, options = self.getOnnxExecutionProvider()
|
||||
self.content_vec_onnx = onnxruntime.InferenceSession(
|
||||
content_vec_onnx_path,
|
||||
providers=providers,
|
||||
provider_options=options,
|
||||
)
|
||||
else:
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[content_vec_path],
|
||||
suffix="",
|
||||
)
|
||||
model = models[0]
|
||||
model.eval()
|
||||
self.hubert_model = model.cpu()
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[self.params.hubert_base],
|
||||
suffix="",
|
||||
)
|
||||
model = models[0]
|
||||
model.eval()
|
||||
self.hubert_model = model.cpu()
|
||||
except Exception as e:
|
||||
print("EXCEPTION during loading hubert/contentvec model", e)
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.audio_buffer: AudioInOut | None = None
|
||||
self.prevVol = 0
|
||||
self.slotInfo = slotInfo
|
||||
self.initialize()
|
||||
|
||||
def initialize(self):
|
||||
print("[Voice Changer] [so-vits-svc40] Initializing... ")
|
||||
self.hps = utils.get_hparams_from_file(self.slotInfo.configFile)
|
||||
self.settings.speakers = self.hps.spk
|
||||
|
||||
# cluster
|
||||
try:
|
||||
if clusterTorchModel is not None and os.path.exists(clusterTorchModel):
|
||||
self.cluster_model = cluster.get_cluster_model(clusterTorchModel)
|
||||
if self.slotInfo.clusterFile is not None:
|
||||
self.cluster_model = cluster.get_cluster_model(self.slotInfo.clusterFile)
|
||||
else:
|
||||
self.cluster_model = None
|
||||
except Exception as e:
|
||||
print("EXCEPTION during loading cluster model ", e)
|
||||
print("[Voice Changer] [so-vits-svc40] EXCEPTION during loading cluster model ", e)
|
||||
print("[Voice Changer] [so-vits-svc40] fallback to without cluster")
|
||||
self.cluster_model = None
|
||||
|
||||
# PyTorchモデル生成
|
||||
if self.settings.pyTorchModelFile is not None:
|
||||
# model
|
||||
if self.slotInfo.isONNX:
|
||||
providers, options = self.getOnnxExecutionProvider()
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
self.slotInfo.modelFile,
|
||||
providers=providers,
|
||||
provider_options=options,
|
||||
)
|
||||
else:
|
||||
net_g = SynthesizerTrn(
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
@ -146,21 +121,12 @@ class SoVitsSvc40:
|
||||
)
|
||||
net_g.eval()
|
||||
self.net_g = net_g
|
||||
utils.load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if self.settings.onnxModelFile is not None:
|
||||
providers, options = self.getOnnxExecutionProvider()
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
self.settings.onnxModelFile,
|
||||
providers=providers,
|
||||
provider_options=options,
|
||||
)
|
||||
return self.get_info()
|
||||
utils.load_checkpoint(self.slotInfo.modelFile, self.net_g, None)
|
||||
|
||||
def getOnnxExecutionProvider(self):
|
||||
availableProviders = onnxruntime.get_available_providers()
|
||||
if self.settings.gpu >= 0 and "CUDAExecutionProvider" in availableProviders:
|
||||
devNum = torch.cuda.device_count()
|
||||
if self.settings.gpu >= 0 and "CUDAExecutionProvider" in availableProviders and devNum > 0:
|
||||
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
|
||||
elif self.settings.gpu >= 0 and "DmlExecutionProvider" in availableProviders:
|
||||
return ["DmlExecutionProvider"], [{}]
|
||||
@ -173,29 +139,18 @@ class SoVitsSvc40:
|
||||
}
|
||||
]
|
||||
|
||||
def isOnnx(self):
|
||||
if self.settings.onnxModelFile is not None:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def update_settings(self, key: str, val: int | float | str):
|
||||
if key in self.settings.intData:
|
||||
val = int(val)
|
||||
setattr(self.settings, key, val)
|
||||
|
||||
if key == "gpu" and self.isOnnx():
|
||||
if key == "gpu" and self.slotInfo.isONNX:
|
||||
providers, options = self.getOnnxExecutionProvider()
|
||||
if self.onnx_session is not None:
|
||||
self.onnx_session.set_providers(
|
||||
providers=providers,
|
||||
provider_options=options,
|
||||
)
|
||||
if self.content_vec_onnx is not None:
|
||||
self.content_vec_onnx.set_providers(
|
||||
providers=providers,
|
||||
provider_options=options,
|
||||
)
|
||||
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
@ -210,12 +165,6 @@ class SoVitsSvc40:
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session is not None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] is not None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
@ -253,7 +202,7 @@ class SoVitsSvc40:
|
||||
wav16k_numpy = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000)
|
||||
wav16k_tensor = torch.from_numpy(wav16k_numpy)
|
||||
|
||||
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
|
||||
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.slotInfo.isONNX:
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
@ -330,10 +279,6 @@ class SoVitsSvc40:
|
||||
return (c, f0, uv, convertSize, vol)
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
|
||||
print("[Voice Changer] No onnx session.")
|
||||
raise NoModeLoadedException("ONNX")
|
||||
|
||||
convertSize = data[3]
|
||||
vol = data[4]
|
||||
data = (
|
||||
@ -367,10 +312,6 @@ class SoVitsSvc40:
|
||||
return result
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") is False or self.net_g is None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
raise NoModeLoadedException("pytorch")
|
||||
|
||||
if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
@ -414,27 +355,13 @@ class SoVitsSvc40:
|
||||
return result
|
||||
|
||||
def inference(self, data):
|
||||
if self.isOnnx():
|
||||
if self.slotInfo.isONNX:
|
||||
audio = self._onnx_inference(data)
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
|
||||
return audio
|
||||
|
||||
@classmethod
|
||||
def loadModel2(cls, props: LoadModelParams2):
|
||||
slotInfo: SoVitsSvc40ModelSlot = SoVitsSvc40ModelSlot()
|
||||
for file in props.files:
|
||||
if file.kind == "soVitsSvc40Config":
|
||||
slotInfo.configFile = file.name
|
||||
elif file.kind == "soVitsSvc40Model":
|
||||
slotInfo.modelFile = file.name
|
||||
elif file.kind == "soVitsSvc40Cluster":
|
||||
slotInfo.clusterFile = file.name
|
||||
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
||||
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
|
||||
return slotInfo
|
||||
|
||||
def __del__(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
|
@ -0,0 +1,21 @@
|
||||
import os
|
||||
|
||||
from data.ModelSlot import SoVitsSvc40ModelSlot
|
||||
from voice_changer.utils.LoadModelParams import LoadModelParams
|
||||
from voice_changer.utils.ModelSlotGenerator import ModelSlotGenerator
|
||||
|
||||
|
||||
class SoVitsSvc40ModelSlotGenerator(ModelSlotGenerator):
|
||||
@classmethod
|
||||
def loadModel(cls, props: LoadModelParams):
|
||||
slotInfo: SoVitsSvc40ModelSlot = SoVitsSvc40ModelSlot()
|
||||
for file in props.files:
|
||||
if file.kind == "soVitsSvc40Config":
|
||||
slotInfo.configFile = file.name
|
||||
elif file.kind == "soVitsSvc40Model":
|
||||
slotInfo.modelFile = file.name
|
||||
elif file.kind == "soVitsSvc40Cluster":
|
||||
slotInfo.clusterFile = file.name
|
||||
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
||||
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
|
||||
return slotInfo
|
@ -126,9 +126,9 @@ class VoiceChangerManager(ServerDeviceCallbacks):
|
||||
slotInfo = MMVCv15ModelSlotGenerator.loadModel(params)
|
||||
self.modelSlotManager.save_model_slot(params.slot, slotInfo)
|
||||
elif params.voiceChangerType == "so-vits-svc-40":
|
||||
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
|
||||
from voice_changer.SoVitsSvc40.SoVitsSvc40ModelSlotGenerator import SoVitsSvc40ModelSlotGenerator
|
||||
|
||||
slotInfo = SoVitsSvc40.loadModel(params)
|
||||
slotInfo = SoVitsSvc40ModelSlotGenerator.loadModel(params)
|
||||
self.modelSlotManager.save_model_slot(params.slot, slotInfo)
|
||||
elif params.voiceChangerType == "DDSP-SVC":
|
||||
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
|
||||
@ -188,6 +188,13 @@ class VoiceChangerManager(ServerDeviceCallbacks):
|
||||
self.voiceChangerModel = MMVCv15(slotInfo)
|
||||
self.voiceChanger = VoiceChanger(self.params)
|
||||
self.voiceChanger.setModel(self.voiceChangerModel)
|
||||
elif slotInfo.voiceChangerType == "so-vits-svc-40":
|
||||
print("................so-vits-svc-40")
|
||||
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
|
||||
|
||||
self.voiceChangerModel = SoVitsSvc40(self.params, slotInfo)
|
||||
self.voiceChanger = VoiceChanger(self.params)
|
||||
self.voiceChanger.setModel(self.voiceChangerModel)
|
||||
else:
|
||||
print(f"[Voice Changer] unknown voice changer model: {slotInfo.voiceChangerType}")
|
||||
del self.voiceChangerModel
|
||||
|
Loading…
Reference in New Issue
Block a user