mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
WIP: Japanese Hubert
This commit is contained in:
parent
72fb482dc7
commit
6a01467ac8
@ -82,6 +82,11 @@ class EnumInferenceTypes(Enum):
|
||||
onnxRVCNono = "onnxRVCNono"
|
||||
|
||||
|
||||
class EnumPitchExtractorTypes(Enum):
|
||||
harvest = "harvest"
|
||||
dio = "dio"
|
||||
|
||||
|
||||
class EnumFrameworkTypes(Enum):
|
||||
pyTorch = "pyTorch"
|
||||
onnx = "onnx"
|
||||
|
@ -1,6 +1,9 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
|
||||
|
||||
# avoiding parse arg error in RVC
|
||||
sys.argv = ["MMVCServerSIO.py"]
|
||||
|
||||
@ -55,10 +58,14 @@ class RVC:
|
||||
audio_buffer: AudioInOut | None = None
|
||||
embedder: Embedder | None = None
|
||||
inferencer: Inferencer | None = None
|
||||
pitchExtractor: PitchExtractor | None = None
|
||||
|
||||
def __init__(self, params: VoiceChangerParams):
|
||||
self.initialLoad = True
|
||||
self.settings = RVCSettings()
|
||||
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(
|
||||
self.settings.f0Detector
|
||||
)
|
||||
|
||||
self.feature_file = None
|
||||
self.index_file = None
|
||||
@ -102,6 +109,15 @@ class RVC:
|
||||
|
||||
return self.get_info()
|
||||
|
||||
def _getDevice(self):
|
||||
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
||||
dev = torch.device("cpu")
|
||||
elif self.mps_enabled:
|
||||
dev = torch.device("mps")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
return dev
|
||||
|
||||
def prepareModel(self, slot: int):
|
||||
if slot < 0:
|
||||
return self.get_info()
|
||||
@ -110,20 +126,14 @@ class RVC:
|
||||
filename = (
|
||||
modelSlot.onnxModelFile if modelSlot.isONNX else modelSlot.pyTorchModelFile
|
||||
)
|
||||
|
||||
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
||||
dev = torch.device("cpu")
|
||||
elif self.mps_enabled:
|
||||
dev = torch.device("mps")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
dev = self._getDevice()
|
||||
|
||||
# Inferencerのロード
|
||||
inferencer = InferencerManager.getInferencer(
|
||||
modelSlot.modelType,
|
||||
filename,
|
||||
self.settings.isHalf,
|
||||
torch.device("cuda:0"),
|
||||
dev,
|
||||
)
|
||||
self.next_inferencer = inferencer
|
||||
|
||||
@ -156,8 +166,14 @@ class RVC:
|
||||
|
||||
def switchModel(self):
|
||||
print("[Voice Changer] Switching model..")
|
||||
# del self.net_g
|
||||
# del self.onnx_session
|
||||
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
|
||||
dev = torch.device("cpu")
|
||||
elif self.mps_enabled:
|
||||
dev = torch.device("mps")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
# embedderはモデルによらず再利用できる可能性が高いので、Switchのタイミングでこちらで取得
|
||||
try:
|
||||
self.embedder = EmbedderManager.getEmbedder(
|
||||
self.next_embedder,
|
||||
@ -330,6 +346,7 @@ class RVC:
|
||||
# self.hubert_model,
|
||||
self.embedder,
|
||||
self.onnx_session,
|
||||
self.pitchExtractor,
|
||||
sid,
|
||||
audio,
|
||||
f0_up_key,
|
||||
@ -391,6 +408,7 @@ class RVC:
|
||||
audio_out = vc.pipeline(
|
||||
self.embedder,
|
||||
self.inferencer,
|
||||
self.pitchExtractor,
|
||||
sid,
|
||||
audio,
|
||||
f0_up_key,
|
||||
|
@ -3,10 +3,10 @@ import numpy as np
|
||||
# import parselmouth
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import scipy.signal as signal
|
||||
import pyworld
|
||||
|
||||
from voice_changer.RVC.embedder.Embedder import Embedder
|
||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||
|
||||
|
||||
class VC(object):
|
||||
@ -18,62 +18,11 @@ class VC(object):
|
||||
self.device = device
|
||||
self.is_half = is_half
|
||||
|
||||
def get_f0(self, audio, p_len, f0_up_key, f0_method, silence_front=0):
|
||||
n_frames = int(len(audio) // self.window) + 1
|
||||
start_frame = int(silence_front * self.sr / self.window)
|
||||
real_silence_front = start_frame * self.window / self.sr
|
||||
|
||||
silence_front_offset = int(np.round(real_silence_front * self.sr))
|
||||
audio = audio[silence_front_offset:]
|
||||
|
||||
# time_step = self.window / self.sr * 1000
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
if f0_method == "dio":
|
||||
_f0, t = pyworld.dio(
|
||||
audio.astype(np.double),
|
||||
self.sr,
|
||||
f0_floor=f0_min,
|
||||
f0_ceil=f0_max,
|
||||
channels_in_octave=2,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(audio.astype(np.double), _f0, t, self.sr)
|
||||
f0 = np.pad(
|
||||
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
||||
)
|
||||
else:
|
||||
f0, t = pyworld.harvest(
|
||||
audio.astype(np.double),
|
||||
fs=self.sr,
|
||||
f0_ceil=f0_max,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
|
||||
f0 = np.pad(
|
||||
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
||||
)
|
||||
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
|
||||
return f0_coarse, f0bak
|
||||
|
||||
def pipeline(
|
||||
self,
|
||||
embedder: Embedder,
|
||||
model,
|
||||
inferencer: Inferencer,
|
||||
pitchExtractor: PitchExtractor,
|
||||
sid,
|
||||
audio,
|
||||
f0_up_key,
|
||||
@ -92,11 +41,11 @@ class VC(object):
|
||||
# ピッチ検出
|
||||
pitch, pitchf = None, None
|
||||
if if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(
|
||||
pitch, pitchf = pitchExtractor.extract(
|
||||
audio_pad,
|
||||
p_len,
|
||||
f0_up_key,
|
||||
f0_method,
|
||||
self.sr,
|
||||
self.window,
|
||||
silence_front=silence_front,
|
||||
)
|
||||
pitch = pitch[:p_len]
|
||||
@ -156,16 +105,19 @@ class VC(object):
|
||||
with torch.no_grad():
|
||||
if pitch is not None:
|
||||
audio1 = (
|
||||
(model.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
||||
(
|
||||
inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
||||
* 32768
|
||||
)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
.astype(np.int16)
|
||||
)
|
||||
else:
|
||||
if hasattr(model, "infer_pitchless"):
|
||||
if hasattr(inferencer, "infer_pitchless"):
|
||||
audio1 = (
|
||||
(model.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
(inferencer.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
@ -173,7 +125,7 @@ class VC(object):
|
||||
)
|
||||
else:
|
||||
audio1 = (
|
||||
(model.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
(inferencer.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
|
@ -29,12 +29,20 @@ class EmbedderManager:
|
||||
def loadEmbedder(
|
||||
cls, embederType: EnumEmbedderTypes, file: str, isHalf: bool, dev: device
|
||||
) -> Embedder:
|
||||
if embederType == EnumEmbedderTypes.hubert:
|
||||
if (
|
||||
embederType == EnumEmbedderTypes.hubert
|
||||
or embederType == EnumEmbedderTypes.hubert.value
|
||||
):
|
||||
return FairseqHubert().loadModel(file, dev, isHalf)
|
||||
elif embederType == EnumEmbedderTypes.hubert_jp: # same as hubert
|
||||
elif (
|
||||
embederType == EnumEmbedderTypes.hubert_jp
|
||||
or embederType == EnumEmbedderTypes.hubert_jp.value
|
||||
):
|
||||
return FairseqHubertJp().loadModel(file, dev, isHalf)
|
||||
elif embederType == EnumEmbedderTypes.contentvec: # same as hubert
|
||||
elif (
|
||||
embederType == EnumEmbedderTypes.contentvec
|
||||
or embederType == EnumEmbedderTypes.contentvec.value
|
||||
):
|
||||
return FairseqContentvec().loadModel(file, dev, isHalf)
|
||||
else:
|
||||
# return hubert as default
|
||||
return FairseqHubert().loadModel(file, dev, isHalf)
|
||||
|
@ -37,8 +37,6 @@ class FairseqHubert(Embedder):
|
||||
"padding_mask": padding_mask,
|
||||
}
|
||||
|
||||
print("feat dev", self.dev)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = self.model.extract_features(**inputs)
|
||||
if embChannels == 256:
|
||||
|
@ -1,7 +1,6 @@
|
||||
from torch import device
|
||||
|
||||
from const import EnumInferenceTypes
|
||||
from voice_changer.RVC.embedder.Embedder import Embedder
|
||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInference
|
||||
from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferenceNono
|
||||
@ -24,19 +23,36 @@ class InferencerManager:
|
||||
@classmethod
|
||||
def loadInferencer(
|
||||
cls, inferencerType: EnumInferenceTypes, file: str, isHalf: bool, dev: device
|
||||
) -> Embedder:
|
||||
if inferencerType == EnumInferenceTypes.pyTorchRVC:
|
||||
) -> Inferencer:
|
||||
if (
|
||||
inferencerType == EnumInferenceTypes.pyTorchRVC
|
||||
or inferencerType == EnumInferenceTypes.pyTorchRVC.value
|
||||
):
|
||||
return RVCInferencer().loadModel(file, dev, isHalf)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCNono:
|
||||
elif (
|
||||
inferencerType == EnumInferenceTypes.pyTorchRVCNono
|
||||
or inferencerType == EnumInferenceTypes.pyTorchRVCNono.value
|
||||
):
|
||||
return RVCInferencerNono().loadModel(file, dev, isHalf)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUI:
|
||||
elif (
|
||||
inferencerType == EnumInferenceTypes.pyTorchWebUI
|
||||
or inferencerType == EnumInferenceTypes.pyTorchWebUI.value
|
||||
):
|
||||
return WebUIInferencer().loadModel(file, dev, isHalf)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUINono:
|
||||
elif (
|
||||
inferencerType == EnumInferenceTypes.pyTorchWebUINono
|
||||
or inferencerType == EnumInferenceTypes.pyTorchWebUINono.value
|
||||
):
|
||||
return WebUIInferencerNono().loadModel(file, dev, isHalf)
|
||||
elif inferencerType == EnumInferenceTypes.onnxRVC:
|
||||
elif (
|
||||
inferencerType == EnumInferenceTypes.onnxRVC
|
||||
or inferencerType == EnumInferenceTypes.onnxRVC.value
|
||||
):
|
||||
return OnnxRVCInference().loadModel(file, dev, isHalf)
|
||||
elif inferencerType == EnumInferenceTypes.onnxRVCNono:
|
||||
elif (
|
||||
inferencerType == EnumInferenceTypes.onnxRVCNono
|
||||
or inferencerType == EnumInferenceTypes.onnxRVCNono.value
|
||||
):
|
||||
return OnnxRVCInferenceNono().loadModel(file, dev, isHalf)
|
||||
else:
|
||||
# return hubert as default
|
||||
raise RuntimeError("[Voice Changer] Inferencer not found", inferencerType)
|
||||
|
42
server/voice_changer/RVC/pitchExtractor/DioPitchExtractor.py
Normal file
42
server/voice_changer/RVC/pitchExtractor/DioPitchExtractor.py
Normal file
@ -0,0 +1,42 @@
|
||||
import pyworld
|
||||
import numpy as np
|
||||
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||
|
||||
|
||||
class DioPitchExtractor(PitchExtractor):
|
||||
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||
n_frames = int(len(audio) // window) + 1
|
||||
start_frame = int(silence_front * sr / window)
|
||||
real_silence_front = start_frame * window / sr
|
||||
|
||||
silence_front_offset = int(np.round(real_silence_front * sr))
|
||||
audio = audio[silence_front_offset:]
|
||||
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
|
||||
_f0, t = pyworld.dio(
|
||||
audio.astype(np.double),
|
||||
sr,
|
||||
f0_floor=f0_min,
|
||||
f0_ceil=f0_max,
|
||||
channels_in_octave=2,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(audio.astype(np.double), _f0, t, sr)
|
||||
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
|
||||
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
|
||||
return f0_coarse, f0bak
|
@ -0,0 +1,43 @@
|
||||
import pyworld
|
||||
import numpy as np
|
||||
import scipy.signal as signal
|
||||
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||
|
||||
|
||||
class HarvestPitchExtractor(PitchExtractor):
|
||||
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||
n_frames = int(len(audio) // window) + 1
|
||||
start_frame = int(silence_front * sr / window)
|
||||
real_silence_front = start_frame * window / sr
|
||||
|
||||
silence_front_offset = int(np.round(real_silence_front * sr))
|
||||
audio = audio[silence_front_offset:]
|
||||
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
|
||||
f0, t = pyworld.harvest(
|
||||
audio.astype(np.double),
|
||||
fs=sr,
|
||||
f0_ceil=f0_max,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, sr)
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
|
||||
f0 = np.pad(f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame))
|
||||
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
|
||||
return f0_coarse, f0bak
|
@ -0,0 +1,9 @@
|
||||
from typing import Protocol
|
||||
from const import EnumPitchExtractorTypes
|
||||
|
||||
|
||||
class PitchExtractor(Protocol):
|
||||
pitchExtractorType: EnumPitchExtractorTypes = EnumPitchExtractorTypes.harvest
|
||||
|
||||
def extract(self, audio, f0_up_key, sr, window, silence_front=0):
|
||||
...
|
@ -0,0 +1,36 @@
|
||||
from typing import Protocol
|
||||
from const import EnumPitchExtractorTypes
|
||||
from voice_changer.RVC.pitchExtractor.DioPitchExtractor import DioPitchExtractor
|
||||
from voice_changer.RVC.pitchExtractor.HarvestPitchExtractor import HarvestPitchExtractor
|
||||
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||||
|
||||
|
||||
class PitchExtractorManager(Protocol):
|
||||
currentPitchExtractor: PitchExtractor | None = None
|
||||
|
||||
@classmethod
|
||||
def getPitchExtractor(
|
||||
cls, pitchExtractorType: EnumPitchExtractorTypes
|
||||
) -> PitchExtractor:
|
||||
cls.currentPitchExtractor = cls.loadPitchExtractor(pitchExtractorType)
|
||||
return cls.currentPitchExtractor
|
||||
|
||||
@classmethod
|
||||
def loadPitchExtractor(
|
||||
cls, pitchExtractorType: EnumPitchExtractorTypes
|
||||
) -> PitchExtractor:
|
||||
if (
|
||||
pitchExtractorType == EnumPitchExtractorTypes.harvest
|
||||
or pitchExtractorType == EnumPitchExtractorTypes.harvest.value
|
||||
):
|
||||
return HarvestPitchExtractor()
|
||||
elif (
|
||||
pitchExtractorType == EnumPitchExtractorTypes.dio
|
||||
or pitchExtractorType == EnumPitchExtractorTypes.dio.value
|
||||
):
|
||||
return DioPitchExtractor()
|
||||
else:
|
||||
# return hubert as default
|
||||
raise RuntimeError(
|
||||
"[Voice Changer] PitchExctractor not found", pitchExtractorType
|
||||
)
|
Loading…
Reference in New Issue
Block a user