diff --git a/.gitignore b/.gitignore index 421376db..13682990 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ dummy +node_modules diff --git a/demo/logs/.gitignore b/demo/logs/.gitignore new file mode 100755 index 00000000..d6b7ef32 --- /dev/null +++ b/demo/logs/.gitignore @@ -0,0 +1,2 @@ +* +!.gitignore diff --git a/demo/mod/attentions.py b/demo/mod/attentions.py new file mode 100755 index 00000000..4e0b0c1f --- /dev/null +++ b/demo/mod/attentions.py @@ -0,0 +1,303 @@ +import copy +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +import commons +import modules +from modules import LayerNorm + + +class Encoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert t_s == t_t, "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert t_s == t_t, "Local attention is only available for self-attention." + block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) + output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) + output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + max_relative_position = 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) + x_flat = x.view([batch, heads, length**2 + length*(length -1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/demo/mod/commons.py b/demo/mod/commons.py new file mode 100755 index 00000000..9ad0444b --- /dev/null +++ b/demo/mod/commons.py @@ -0,0 +1,161 @@ +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size*dilation - dilation)/2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def intersperse(lst, item): + result = [item] * (len(lst) * 2 + 1) + result[1::2] = lst + return result + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d( + length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = ( + math.log(float(max_timescale) / float(min_timescale)) / + (num_timescales - 1)) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2,3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1. / norm_type) + return total_norm diff --git a/demo/mod/data_utils.py b/demo/mod/data_utils.py new file mode 100755 index 00000000..3e06620f --- /dev/null +++ b/demo/mod/data_utils.py @@ -0,0 +1,492 @@ +import time +import os +import random +import numpy as np +import torch +import torch.utils.data +import tqdm + +import commons +from mel_processing import spectrogram_torch +from utils import load_wav_to_torch, load_filepaths_and_text +from text import text_to_sequence, cleaned_text_to_sequence +import struct +#add +from retry import retry +import random +import torchaudio +from scipy.io.wavfile import write + +class TextAudioLoader(torch.utils.data.Dataset): + """ + 1) loads audio, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + def __init__(self, audiopaths_and_text, hparams, use_test = True): + self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) + self.text_cleaners = hparams.text_cleaners + self.max_wav_value = hparams.max_wav_value + self.sampling_rate = hparams.sampling_rate + self.filter_length = hparams.filter_length + self.hop_length = hparams.hop_length + self.win_length = hparams.win_length + self.sampling_rate = hparams.sampling_rate + self.use_test = use_test + + self.cleaned_text = getattr(hparams, "cleaned_text", False) + + self.add_blank = hparams.add_blank + self.min_text_len = getattr(hparams, "min_text_len", 1) + self.max_text_len = getattr(hparams, "max_text_len", 190) + + random.seed(1234) + random.shuffle(self.audiopaths_and_text) + self._filter() + + + def _filter(self): + """ + Filter text & store spec lengths + """ + # Store spectrogram lengths for Bucketing + # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) + # spec_length = wav_length // hop_length + + audiopaths_and_text_new = [] + lengths = [] + for audiopath, text in self.audiopaths_and_text: + if self.min_text_len <= len(text) and len(text) <= self.max_text_len: + audiopaths_and_text_new.append([audiopath, text]) + lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) + self.audiopaths_and_text = audiopaths_and_text_new + self.lengths = lengths + + def get_audio_text_pair(self, audiopath_and_text): + # separate filename and text + audiopath, text = audiopath_and_text[0], audiopath_and_text[1] + text = self.get_text(text) + if self.use_test != True: + text = torch.as_tensor("a") + spec, wav = self.get_audio(audiopath) + return (text, spec, wav) + + def get_audio(self, filename): + audio, sampling_rate = load_wav_to_torch(filename) + if sampling_rate != self.sampling_rate: + raise ValueError("{} {} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + audio_norm = audio / self.max_wav_value + audio_norm = audio_norm.unsqueeze(0) + spec_filename = filename.replace(".wav", ".spec.pt") + if os.path.exists(spec_filename): + spec = torch.load(spec_filename) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + torch.save(spec, spec_filename) + return spec, audio_norm + + def get_text(self, text): + if self.cleaned_text: + text_norm = cleaned_text_to_sequence(text) + else: + text_norm = text_to_sequence(text, self.text_cleaners) + if self.add_blank: + text_norm = commons.intersperse(text_norm, 0) + text_norm = torch.LongTensor(text_norm) + return text_norm + + def __getitem__(self, index): + return self.get_audio_text_pair(self.audiopaths_and_text[index]) + + def __len__(self): + return len(self.audiopaths_and_text) + + +class TextAudioCollate(): + """ Zero-pads model inputs and targets + """ + def __init__(self, return_ids=False): + self.return_ids = return_ids + + def __call__(self, batch): + """Collate's training batch from normalized text and aduio + PARAMS + ------ + batch: [text_normalized, spec_normalized, wav_normalized] + """ + # Right zero-pad all one-hot text sequences to max input length + _, ids_sorted_decreasing = torch.sort( + torch.LongTensor([x[1].size(1) for x in batch]), + dim=0, descending=True) + + max_text_len = max([len(x[0]) for x in batch]) + max_spec_len = max([x[1].size(1) for x in batch]) + max_wav_len = max([x[2].size(1) for x in batch]) + + text_lengths = torch.LongTensor(len(batch)) + spec_lengths = torch.LongTensor(len(batch)) + wav_lengths = torch.LongTensor(len(batch)) + + text_padded = torch.LongTensor(len(batch), max_text_len) + spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) + wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) + text_padded.zero_() + spec_padded.zero_() + wav_padded.zero_() + for i in range(len(ids_sorted_decreasing)): + row = batch[ids_sorted_decreasing[i]] + + text = row[0] + text_padded[i, :text.size(0)] = text + text_lengths[i] = text.size(0) + + spec = row[1] + spec_padded[i, :, :spec.size(1)] = spec + spec_lengths[i] = spec.size(1) + + wav = row[2] + wav_padded[i, :, :wav.size(1)] = wav + wav_lengths[i] = wav.size(1) + + if self.return_ids: + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths + + +"""Multi speaker version""" +class TextAudioSpeakerLoader(torch.utils.data.Dataset): + """ + 1) loads audio, speaker_id, text pairs + 2) normalizes text and converts them to sequences of integers + 3) computes spectrograms from audio files. + """ + def __init__(self, audiopaths_sid_text, hparams, no_text=False, augmentation=False, augmentation_params=None, no_use_textfile = False): + if no_use_textfile: + self.audiopaths_sid_text = list() + else: + self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) + + self.text_cleaners = hparams.text_cleaners + self.max_wav_value = hparams.max_wav_value + self.sampling_rate = hparams.sampling_rate + self.filter_length = hparams.filter_length + self.hop_length = hparams.hop_length + self.win_length = hparams.win_length + self.sampling_rate = hparams.sampling_rate + self.no_text = no_text + self.augmentation = augmentation + if augmentation : + self.gain_p = augmentation_params.gain_p + self.min_gain_in_db = augmentation_params.min_gain_in_db + self.max_gain_in_db = augmentation_params.max_gain_in_db + self.time_stretch_p = augmentation_params.time_stretch_p + self.min_rate = augmentation_params.min_rate + self.max_rate = augmentation_params.max_rate + self.pitch_shift_p = augmentation_params.pitch_shift_p + self.min_semitones = augmentation_params.min_semitones + self.max_semitones = augmentation_params.max_semitones + self.add_gaussian_noise_p = augmentation_params.add_gaussian_noise_p + self.min_amplitude = augmentation_params.min_amplitude + self.max_amplitude = augmentation_params.max_amplitude + self.frequency_mask_p = augmentation_params.frequency_mask_p + + self.cleaned_text = getattr(hparams, "cleaned_text", False) + + self.add_blank = hparams.add_blank + self.min_text_len = getattr(hparams, "min_text_len", 1) + self.max_text_len = getattr(hparams, "max_text_len", 1000) + + random.seed(1234) + random.shuffle(self.audiopaths_sid_text) + self._filter() + + @retry(tries=30, delay=10) + def _filter(self): + """ + Filter text & store spec lengths + """ + audiopaths_sid_text_new = [] + lengths = [] + + # for audiopath, sid, text in tqdm.tqdm(self.audiopaths_sid_text): + for audiopath, sid, text in self.audiopaths_sid_text: + if self.min_text_len <= len(text) and len(text) <= self.max_text_len: + audiopaths_sid_text_new.append([audiopath, sid, text]) + lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) + self.audiopaths_sid_text = audiopaths_sid_text_new + self.lengths = lengths + + def get_audio_text_speaker_pair(self, audiopath_sid_text): + # separate filename, speaker_id and text + wavdata, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2] + text = self.get_text(text) + if self.no_text: + text = self.get_text("a") + spec, wav = self.get_audio(wavdata) + sid = self.get_sid(sid) + return (text, spec, wav, sid) + + @retry(exceptions=(PermissionError), tries=100, delay=10) + def get_audio(self, wavdata): + # 音声データは±1.0内に正規化したtorchベクトルでunsqueeze(0)で外側1次元くるんだものを扱う + audio = torch.FloatTensor(wavdata.astype(np.float32)) + sampling_rate=24000 + try: + if sampling_rate != self.sampling_rate: + raise ValueError("[Error] Exception: source {} SR doesn't match target {} SR".format( + sampling_rate, self.sampling_rate)) + except ValueError as e: + print(e) + exit() + audio_norm = self.get_normalized_audio(audio, self.max_wav_value) + + if self.augmentation: + audio_augmented = self.add_augmentation(audio_norm, sampling_rate) + audio_noised = self.add_noise(audio_augmented, sampling_rate) + # ノーマライズ後のaugmentationとnoise付加で範囲外になったところを削る + audio_augmented = torch.clamp(audio_augmented, -1, 1) + audio_noised = torch.clamp(audio_noised, -1, 1) + # audio(音声波形)は教師信号となるのでノイズは含まずaugmentationのみしたものを使用 + audio_norm = audio_augmented + # spec(スペクトログラム)は入力信号となるのでaugmentationしてさらにノイズを付加したものを使用 + spec = spectrogram_torch(audio_noised, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec_noised = self.add_spectrogram_noise(spec) + spec = torch.squeeze(spec_noised, 0) + else: + spec = spectrogram_torch(audio_norm, self.filter_length, + self.sampling_rate, self.hop_length, self.win_length, + center=False) + spec = torch.squeeze(spec, 0) + return spec, audio_norm + + def add_augmentation(self, audio, sampling_rate): + gain_in_db = 0.0 + if random.random() <= self.gain_p: + gain_in_db = random.uniform(self.min_gain_in_db, self.max_gain_in_db) + time_stretch_rate = 1.0 + if random.random() <= self.time_stretch_p: + time_stretch_rate = random.uniform(self.min_rate, self.max_rate) + pitch_shift_semitones = 0 + if random.random() <= self.pitch_shift_p: + pitch_shift_semitones = random.uniform(self.min_semitones, self.max_semitones) * 100 # 1/100 semitone 単位指定のため + augmentation_effects = [ + ["gain", f"{gain_in_db}"], + ["tempo", f"{time_stretch_rate}"], + ["pitch", f"{pitch_shift_semitones}"], + ["rate", f"{sampling_rate}"] + ] + audio_augmented, _ = torchaudio.sox_effects.apply_effects_tensor(audio, sampling_rate, augmentation_effects) + return audio_augmented + + def add_noise(self, audio, sampling_rate): + # AddGaussianNoise + audio = self.add_gaussian_noise(audio) + return audio + + def add_gaussian_noise(self, audio): + assert self.min_amplitude >= 0.0 + assert self.max_amplitude >= 0.0 + assert self.max_amplitude >= self.min_amplitude + if random.random() > self.add_gaussian_noise_p: + return audio + amplitude = random.uniform(self.min_amplitude, self.max_amplitude) + noise = torch.randn(audio.size()) + noised_audio = audio + amplitude * noise + return noised_audio + + def add_spectrogram_noise(self, spec): + # FrequencyMask + masking = torchaudio.transforms.FrequencyMasking(freq_mask_param=80) + masked = masking(spec) + return masked + + def get_normalized_audio(self, audio, max_wav_value): + audio_norm = audio / max_wav_value + audio_norm = audio_norm.unsqueeze(0) + return audio_norm + + def get_text(self, text): + if self.cleaned_text: + text_norm = cleaned_text_to_sequence(text) + else: + text_norm = text_to_sequence(text, self.text_cleaners) + if self.add_blank: + text_norm = commons.intersperse(text_norm, 0) + text_norm = torch.LongTensor(text_norm) + return text_norm + + def get_sid(self, sid): + sid = torch.LongTensor([int(sid)]) + return sid + + def __getitem__(self, index): + return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) + + def __len__(self): + return len(self.audiopaths_sid_text) + + +class TextAudioSpeakerCollate(): + """ Zero-pads model inputs and targets + """ + def __init__(self, return_ids=False, no_text = False): + self.return_ids = return_ids + self.no_text = no_text + + def __call__(self, batch): + """Collate's training batch from normalized text, audio and speaker identities + PARAMS + ------ + batch: [text_normalized, spec_normalized, wav_normalized, sid] + """ + # Right zero-pad all one-hot text sequences to max input length + + _, ids_sorted_decreasing = torch.sort( + torch.LongTensor([x[1].size(1) for x in batch]), + dim=0, descending=True) + + max_text_len = max([len(x[0]) for x in batch]) + max_spec_len = max([x[1].size(1) for x in batch]) + max_wav_len = max([x[2].size(1) for x in batch]) + + text_lengths = torch.LongTensor(len(batch)) + spec_lengths = torch.LongTensor(len(batch)) + wav_lengths = torch.LongTensor(len(batch)) + sid = torch.LongTensor(len(batch)) + + text_padded = torch.LongTensor(len(batch), max_text_len) + spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) + wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) + text_padded.zero_() + spec_padded.zero_() + wav_padded.zero_() + for i in range(len(ids_sorted_decreasing)): + row = batch[ids_sorted_decreasing[i]] + + text = row[0] + text_padded[i, :text.size(0)] = text + text_lengths[i] = text.size(0) + + spec = row[1] + spec_padded[i, :, :spec.size(1)] = spec + spec_lengths[i] = spec.size(1) + + wav = row[2] + wav_padded[i, :, :wav.size(1)] = wav + wav_lengths[i] = wav.size(1) + + sid[i] = row[3] + + if self.return_ids: + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing + return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid + + +class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): + """ + Maintain similar input lengths in a batch. + Length groups are specified by boundaries. + Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. + + It removes samples which are not included in the boundaries. + Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. + """ + def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): + super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) + self.lengths = dataset.lengths + self.batch_size = batch_size + self.boundaries = boundaries + + self.buckets, self.num_samples_per_bucket = self._create_buckets() + self.total_size = sum(self.num_samples_per_bucket) + self.num_samples = self.total_size // self.num_replicas + + def _create_buckets(self): + buckets = [[] for _ in range(len(self.boundaries) - 1)] + for i in range(len(self.lengths)): + length = self.lengths[i] + idx_bucket = self._bisect(length) + if idx_bucket != -1: + buckets[idx_bucket].append(i) + + for i in range(len(buckets) - 1, 0, -1): + if len(buckets[i]) == 0: + buckets.pop(i) + self.boundaries.pop(i+1) + + num_samples_per_bucket = [] + for i in range(len(buckets)): + len_bucket = len(buckets[i]) + total_batch_size = self.num_replicas * self.batch_size + rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size + num_samples_per_bucket.append(len_bucket + rem) + return buckets, num_samples_per_bucket + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch) + + indices = [] + if self.shuffle: + for bucket in self.buckets: + indices.append(torch.randperm(len(bucket), generator=g).tolist()) + else: + for bucket in self.buckets: + indices.append(list(range(len(bucket)))) + + batches = [] + for i in range(len(self.buckets)): + next_bucket = (i+1) % len(self.buckets) + bucket = self.buckets[i] + len_bucket = len(bucket) + ids_bucket = indices[i] + num_samples_bucket = self.num_samples_per_bucket[i] + + if len_bucket == 0: + print("[Warn] Exception: length of buckets {} is 0. ID:{} Skip.".format(i,i)) + continue + + # add extra samples to make it evenly divisible + rem = num_samples_bucket - len_bucket + ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] + + # subsample + ids_bucket = ids_bucket[self.rank::self.num_replicas] + + # batching + for j in range(len(ids_bucket) // self.batch_size): + batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]] + batches.append(batch) + + if self.shuffle: + batch_ids = torch.randperm(len(batches), generator=g).tolist() + batches = [batches[i] for i in batch_ids] + self.batches = batches + + assert len(self.batches) * self.batch_size == self.num_samples + return iter(self.batches) + + def _bisect(self, x, lo=0, hi=None): + if hi is None: + hi = len(self.boundaries) - 1 + + if hi > lo: + mid = (hi + lo) // 2 + if self.boundaries[mid] < x and x <= self.boundaries[mid+1]: + return mid + elif x <= self.boundaries[mid]: + return self._bisect(x, lo, mid) + else: + return self._bisect(x, mid + 1, hi) + else: + return -1 + + def __len__(self): + return self.num_samples // self.batch_size diff --git a/demo/mod/mel_processing.py b/demo/mod/mel_processing.py new file mode 100755 index 00000000..cb33b76d --- /dev/null +++ b/demo/mod/mel_processing.py @@ -0,0 +1,114 @@ +import math +import os +import random +import torch +from torch import nn +import torch.nn.functional as F +import torch.utils.data +import numpy as np +import librosa +import librosa.util as librosa_util +from librosa.util import normalize, pad_center, tiny +from scipy.signal import get_window +from scipy.io.wavfile import read +from librosa.filters import mel as librosa_mel_fn + +MAX_WAV_VALUE = 32768.0 + + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression_torch(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def spectral_normalize_torch(magnitudes): + output = dynamic_range_compression_torch(magnitudes) + return output + + +def spectral_de_normalize_torch(magnitudes): + output = dynamic_range_decompression_torch(magnitudes) + return output + + +mel_basis = {} +hann_window = {} + + +def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) + spec = torch.view_as_real(spec) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): + global mel_basis + dtype_device = str(spec.dtype) + '_' + str(spec.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + return spec + + +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + if torch.min(y) < -1.: + print('min value is ', torch.min(y)) + if torch.max(y) > 1.: + print('max value is ', torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + '_' + str(y.device) + fmax_dtype_device = str(fmax) + '_' + dtype_device + wnsize_dtype_device = str(win_size) + '_' + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') + y = y.squeeze(1) + + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) + spec = torch.view_as_real(spec) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + + return spec diff --git a/demo/mod/models.py b/demo/mod/models.py new file mode 100755 index 00000000..7b40b95f --- /dev/null +++ b/demo/mod/models.py @@ -0,0 +1,407 @@ +import copy +import math +import torch +from torch import nn +from torch.nn import functional as F + +import commons +import modules +import attentions +import monotonic_align + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from commons import init_weights, get_padding + + +class TextEncoder(nn.Module): + def __init__(self, + n_vocab, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout): + super().__init__() + self.n_vocab = n_vocab + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + + self.emb = nn.Embedding(n_vocab, hidden_channels) + nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) + + self.encoder = attentions.Encoder( + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout) + self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths): + x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return x, m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class PosteriorEncoder(nn.Module): + def __init__(self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + +class Generator(torch.nn.Module): + def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) + resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append(weight_norm( + ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), + k, u, padding=(k-u)//2))) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel//(2**(i+1)) + for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + #self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + gin_channels = 0 + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + #x = x + self.cond(g) + g=None + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i*self.num_kernels+j](x) + else: + xs += self.resblocks[i*self.num_kernels+j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + print('Removing weight norm...') + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), + norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), + ]) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList([ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ]) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2,3,5,7,11] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + + +class SynthesizerTrn(nn.Module): + """ + Synthesizer for Training + """ + + def __init__(self, + n_vocab, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + n_flow, + n_speakers=0, + gin_channels=0, + use_sdp=True, + **kwargs): + + super().__init__() + self.n_vocab = n_vocab + self.spec_channels = spec_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.n_speakers = n_speakers + self.gin_channels = gin_channels + + self.use_sdp = use_sdp + + self.enc_p = TextEncoder(n_vocab, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout) + self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) + self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) + self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, n_flows=n_flow, gin_channels=gin_channels) + + if n_speakers > 1: + self.emb_g = nn.Embedding(n_speakers, gin_channels) + + def forward(self, x, x_lengths, y, y_lengths, sid=None): + + x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) + if self.n_speakers > 0: + g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] + else: + g = None + + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + + with torch.no_grad(): + # negative cross-entropy + s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] + neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s] + neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] + neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] + neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s] + neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 + + attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) + attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() + + # expand prior + m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) + logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) + + z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) + o = self.dec(z_slice, g=g) + return o, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): + assert self.n_speakers > 0, "n_speakers have to be larger than 0." + g_src = self.emb_g(sid_src).unsqueeze(-1) + g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) + z_p = self.flow(z, y_mask, g=g_src) + z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) + o_hat = self.dec(z_hat * y_mask, g=g_tgt) + return o_hat, y_mask, (z, z_p, z_hat) + + def voice_ra_pa_db(self, y, y_lengths, sid_src, sid_tgt): + assert self.n_speakers > 0, "n_speakers have to be larger than 0." + g_src = self.emb_g(sid_src).unsqueeze(-1) + g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) + o_hat = self.dec(z * y_mask, g=g_tgt) + return o_hat, y_mask, (z) + + def voice_ra_pa_da(self, y, y_lengths, sid_src, sid_tgt): + assert self.n_speakers > 0, "n_speakers have to be larger than 0." + g_src = self.emb_g(sid_src).unsqueeze(-1) + g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) + o_hat = self.dec(z * y_mask, g=g_src) + return o_hat, y_mask, (z) + + def voice_conversion_cycle(self, y, y_lengths, sid_src, sid_tgt): + assert self.n_speakers > 0, "n_speakers have to be larger than 0." + g_src = self.emb_g(sid_src).unsqueeze(-1) + g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) + z_p = self.flow(z, y_mask, g=g_src) + z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) + z_p_hat = self.flow(z_hat, y_mask, g=g_tgt) + z_hat_hat = self.flow(z_p_hat, y_mask, g=g_src, reverse=True) + o_hat = self.dec(z_hat_hat * y_mask, g=g_tgt) + return o_hat, y_mask, (z, z_p, z_hat) + + diff --git a/demo/mod/modules.py b/demo/mod/modules.py new file mode 100755 index 00000000..9c7fd9cd --- /dev/null +++ b/demo/mod/modules.py @@ -0,0 +1,390 @@ +import copy +import math +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import functional as F + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm + +import commons +from commons import init_weights, get_padding +from transforms import piecewise_rational_quadratic_transform + + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential( + nn.ReLU(), + nn.Dropout(p_dropout)) + for _ in range(n_layers-1): + self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size ** i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, + groups=channels, dilation=dilation, padding=padding + )) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): + super(WN, self).__init__() + assert(kernel_size % 2 == 1) + self.hidden_channels =hidden_channels + self.kernel_size = kernel_size, + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') + + for i in range(n_layers): + dilation = dilation_rate ** i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, + dilation=dilation, padding=padding) + in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply( + x_in, + g_l, + n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:,:self.hidden_channels,:] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:,self.hidden_channels:,:] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]))) + ]) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, + padding=get_padding(kernel_size, 1))) + ]) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList([ + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]))), + weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]))) + ]) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels,1)) + self.logs = nn.Parameter(torch.zeros(channels,1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1,2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__(self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels]*2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels]*2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1,2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + +class ConvFlow(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): + super().__init__() + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.num_bins = num_bins + self.tail_bound = tail_bound + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) + self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) + self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels]*2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_derivatives = h[..., 2 * self.num_bins:] + + x1, logabsdet = piecewise_rational_quadratic_transform(x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails='linear', + tail_bound=self.tail_bound + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1,2]) + if not reverse: + return x, logdet + else: + return x diff --git a/demo/mod/monotonic_align/__init__.py b/demo/mod/monotonic_align/__init__.py new file mode 100755 index 00000000..3d7009c4 --- /dev/null +++ b/demo/mod/monotonic_align/__init__.py @@ -0,0 +1,19 @@ +import numpy as np +import torch +from .monotonic_align.core import maximum_path_c + + +def maximum_path(neg_cent, mask): + """ Cython optimized version. + neg_cent: [b, t_t, t_s] + mask: [b, t_t, t_s] + """ + device = neg_cent.device + dtype = neg_cent.dtype + neg_cent = neg_cent.data.cpu().numpy().astype(np.float32) + path = np.zeros(neg_cent.shape, dtype=np.int32) + + t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) + t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) + maximum_path_c(path, neg_cent, t_t_max, t_s_max) + return torch.from_numpy(path).to(device=device, dtype=dtype) diff --git a/demo/mod/monotonic_align/core.pyx b/demo/mod/monotonic_align/core.pyx new file mode 100755 index 00000000..bfaabd4d --- /dev/null +++ b/demo/mod/monotonic_align/core.pyx @@ -0,0 +1,42 @@ +cimport cython +from cython.parallel import prange + + +@cython.boundscheck(False) +@cython.wraparound(False) +cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil: + cdef int x + cdef int y + cdef float v_prev + cdef float v_cur + cdef float tmp + cdef int index = t_x - 1 + + for y in range(t_y): + for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)): + if x == y: + v_cur = max_neg_val + else: + v_cur = value[y-1, x] + if x == 0: + if y == 0: + v_prev = 0. + else: + v_prev = max_neg_val + else: + v_prev = value[y-1, x-1] + value[y, x] += max(v_prev, v_cur) + + for y in range(t_y - 1, -1, -1): + path[y, index] = 1 + if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]): + index = index - 1 + + +@cython.boundscheck(False) +@cython.wraparound(False) +cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil: + cdef int b = paths.shape[0] + cdef int i + for i in prange(b, nogil=True): + maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i]) diff --git a/demo/mod/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so b/demo/mod/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so new file mode 100755 index 00000000..d42eff71 Binary files /dev/null and b/demo/mod/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so differ diff --git a/demo/mod/monotonic_align/setup.py b/demo/mod/monotonic_align/setup.py new file mode 100755 index 00000000..d68e6672 --- /dev/null +++ b/demo/mod/monotonic_align/setup.py @@ -0,0 +1,23 @@ +import numpy as np +import torch +import sys +print(sys.path) +sys.path.append("/backend/mod/") +print(sys.path) +from .monotonic_align.core import maximum_path_c + + +def maximum_path(neg_cent, mask): + """ Cython optimized version. + neg_cent: [b, t_t, t_s] + mask: [b, t_t, t_s] + """ + device = neg_cent.device + dtype = neg_cent.dtype + neg_cent = neg_cent.data.cpu().numpy().astype(np.float32) + path = np.zeros(neg_cent.shape, dtype=np.int32) + + t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) + t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) + maximum_path_c(path, neg_cent, t_t_max, t_s_max) + return torch.from_numpy(path).to(device=device, dtype=dtype) diff --git a/demo/mod/text/__init__.py b/demo/mod/text/__init__.py new file mode 100755 index 00000000..4ac41f90 --- /dev/null +++ b/demo/mod/text/__init__.py @@ -0,0 +1,54 @@ +""" from https://github.com/keithito/tacotron """ +from text import cleaners +from text.symbols import symbols + + +# Mappings from symbol to numeric ID and vice versa: +_symbol_to_id = {s: i for i, s in enumerate(symbols)} +_id_to_symbol = {i: s for i, s in enumerate(symbols)} + + +def text_to_sequence(text, cleaner_names): + '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. + Args: + text: string to convert to a sequence + cleaner_names: names of the cleaner functions to run the text through + Returns: + List of integers corresponding to the symbols in the text + ''' + sequence = [] + + clean_text = _clean_text(text, cleaner_names) + for symbol in clean_text: + symbol_id = _symbol_to_id[symbol] + sequence += [symbol_id] + return sequence + + +def cleaned_text_to_sequence(cleaned_text): + '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. + Args: + text: string to convert to a sequence + Returns: + List of integers corresponding to the symbols in the text + ''' + sequence = [_symbol_to_id[symbol] for symbol in cleaned_text] + return sequence + + +def sequence_to_text(sequence): + '''Converts a sequence of IDs back to a string''' + result = '' + for symbol_id in sequence: + s = _id_to_symbol[symbol_id] + result += s + return result + + +def _clean_text(text, cleaner_names): + for name in cleaner_names: + cleaner = getattr(cleaners, name) + if not cleaner: + raise Exception('Unknown cleaner: %s' % name) + text = cleaner(text) + return text diff --git a/demo/mod/text/cleaners.py b/demo/mod/text/cleaners.py new file mode 100755 index 00000000..32afd52c --- /dev/null +++ b/demo/mod/text/cleaners.py @@ -0,0 +1,105 @@ +""" The following information was added with reference to https://github.com/jaywalnut310/vits/tree/1eef52ed50743f77fca9ff6773ba673497f6bf9d. """ +""" from https://github.com/keithito/tacotron """ + +''' +Cleaners are transformations that run over the input text at both training and eval time. + +Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" +hyperparameter. Some cleaners are English-specific. You'll typically want to use: + 1. "english_cleaners" for English text + 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using + the Unidecode library (https://pypi.python.org/pypi/Unidecode) + 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update + the symbols in symbols.py to match your data). +''' + +import re +from unidecode import unidecode +from phonemizer import phonemize + + +# Regular expression matching whitespace: +_whitespace_re = re.compile(r'\s+') + +# List of (regular expression, replacement) pairs for abbreviations: +_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ + ('mrs', 'misess'), + ('mr', 'mister'), + ('dr', 'doctor'), + ('st', 'saint'), + ('co', 'company'), + ('jr', 'junior'), + ('maj', 'major'), + ('gen', 'general'), + ('drs', 'doctors'), + ('rev', 'reverend'), + ('lt', 'lieutenant'), + ('hon', 'honorable'), + ('sgt', 'sergeant'), + ('capt', 'captain'), + ('esq', 'esquire'), + ('ltd', 'limited'), + ('col', 'colonel'), + ('ft', 'fort'), +]] + + +def expand_abbreviations(text): + for regex, replacement in _abbreviations: + text = re.sub(regex, replacement, text) + return text + + +def expand_numbers(text): + return normalize_numbers(text) + + +def lowercase(text): + return text.lower() + + +def collapse_whitespace(text): + return re.sub(_whitespace_re, ' ', text) + + +def convert_to_ascii(text): + return unidecode(text) + + +def basic_cleaners(text): + '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def transliteration_cleaners(text): + '''Pipeline for non-English text that transliterates to ASCII.''' + text = convert_to_ascii(text) + text = lowercase(text) + text = collapse_whitespace(text) + return text + + +def english_cleaners(text): + '''Pipeline for English text, including abbreviation expansion.''' + text = convert_to_ascii(text) + text = lowercase(text) + text = expand_abbreviations(text) + phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) + phonemes = collapse_whitespace(phonemes) + return phonemes + + +def english_cleaners2(text): + '''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' + text = convert_to_ascii(text) + text = lowercase(text) + text = expand_abbreviations(text) + phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True) + phonemes = collapse_whitespace(phonemes) + return phonemes + +def japanese_cleaners(text): + phonemes = text.split('-') + return phonemes \ No newline at end of file diff --git a/demo/mod/text/symbols.py b/demo/mod/text/symbols.py new file mode 100755 index 00000000..2a46c1fa --- /dev/null +++ b/demo/mod/text/symbols.py @@ -0,0 +1,64 @@ +""" The following information was added with reference to https://github.com/jaywalnut310/vits/tree/1eef52ed50743f77fca9ff6773ba673497f6bf9d """ +""" from https://github.com/keithito/tacotron """ + +''' +Defines the set of symbols used in text input to the model. +''' +_pad = '_' +_punctuation = ';:,.!?¡¿—…"«»“” ' +_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' +_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" + + +# Export all symbols: +symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + +# Special symbol ids +SPACE_ID = symbols.index(" ") + +symbols = [ + "A", + "E", + "I", + "N", + "O", + "U", + "a", + "b", + "by", + "ch", + "cl", + "d", + "dy", + "e", + "f", + "g", + "gy", + "h", + "hy", + "i", + "j", + "k", + "ky", + "m", + "my", + "n", + "ny", + "o", + "p", + "py", + "r", + "ry", + "s", + "sh", + "t", + "ts", + "ty", + "u", + "v", + "w", + "y", + "z", + "pau", + "sil" +] diff --git a/demo/mod/transforms.py b/demo/mod/transforms.py new file mode 100755 index 00000000..4793d67c --- /dev/null +++ b/demo/mod/transforms.py @@ -0,0 +1,193 @@ +import torch +from torch.nn import functional as F + +import numpy as np + + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = { + 'tails': tails, + 'tail_bound': tail_bound + } + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum( + inputs[..., None] >= bin_locations, + dim=-1 + ) - 1 + + +def unconstrained_rational_quadratic_spline(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails='linear', + tail_bound=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == 'linear': + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError('{} tails are not implemented.'.format(tails)) + + outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative + ) + + return outputs, logabsdet + +def rational_quadratic_spline(inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0., right=1., bottom=0., top=1., + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError('Input to a transform is not within its domain') + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError('Minimal bin width too large for the number of bins') + if min_bin_height * num_bins > 1.0: + raise ValueError('Minimal bin height too large for the number of bins') + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (((inputs - input_cumheights) * (input_derivatives + + input_derivatives_plus_one + - 2 * input_delta) + + input_heights * (input_delta - input_derivatives))) + b = (input_heights * input_derivatives + - (inputs - input_cumheights) * (input_derivatives + + input_derivatives_plus_one + - 2 * input_delta)) + c = - input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta) + derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2)) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * (input_delta * theta.pow(2) + + input_derivatives * theta_one_minus_theta) + denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2)) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet diff --git a/demo/mod/utils.py b/demo/mod/utils.py new file mode 100755 index 00000000..fae83f01 --- /dev/null +++ b/demo/mod/utils.py @@ -0,0 +1,270 @@ +import os +import glob +import sys +import argparse +import logging +import json +import subprocess +import numpy as np +from scipy.io.wavfile import read +import torch + +MATPLOTLIB_FLAG = False + +logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) +logger = logging + + +def load_checkpoint(checkpoint_path, model, optimizer=None): + assert os.path.isfile(checkpoint_path), f"No such file or directory: {checkpoint_path}" + checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') + iteration = checkpoint_dict['iteration'] + learning_rate = checkpoint_dict['learning_rate'] + if optimizer is not None: + optimizer.load_state_dict(checkpoint_dict['optimizer']) + saved_state_dict = checkpoint_dict['model'] + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + new_state_dict= {} + for k, v in state_dict.items(): + try: + new_state_dict[k] = saved_state_dict[k] + except: + logger.info("%s is not in the checkpoint" % k) + new_state_dict[k] = v + if hasattr(model, 'module'): + model.module.load_state_dict(new_state_dict) + else: + model.load_state_dict(new_state_dict) + logger.info("Loaded checkpoint '{}' (iteration {})" .format( + checkpoint_path, iteration)) + return model, optimizer, learning_rate, iteration + + +def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): + logger.info("Saving model and optimizer state at iteration {} to {}".format( + iteration, checkpoint_path)) + if hasattr(model, 'module'): + state_dict = model.module.state_dict() + else: + state_dict = model.state_dict() + torch.save({'model': state_dict, + 'iteration': iteration, + 'optimizer': optimizer.state_dict(), + 'learning_rate': learning_rate}, checkpoint_path) + + +def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): + for k, v in scalars.items(): + writer.add_scalar(k, v, global_step) + for k, v in histograms.items(): + writer.add_histogram(k, v, global_step) + for k, v in images.items(): + writer.add_image(k, v, global_step, dataformats='HWC') + for k, v in audios.items(): + writer.add_audio(k, v, global_step, audio_sampling_rate) + + +def latest_checkpoint_path(dir_path, regex="G_*.pth"): + f_list = glob.glob(os.path.join(dir_path, regex)) + f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) + x = f_list[-1] + print(x) + return x + + +def plot_spectrogram_to_numpy(spectrogram): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(10,2)) + im = ax.imshow(spectrogram, aspect="auto", origin="lower", + interpolation='none') + plt.colorbar(im, ax=ax) + plt.xlabel("Frames") + plt.ylabel("Channels") + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def plot_alignment_to_numpy(alignment, info=None): + global MATPLOTLIB_FLAG + if not MATPLOTLIB_FLAG: + import matplotlib + matplotlib.use("Agg") + MATPLOTLIB_FLAG = True + mpl_logger = logging.getLogger('matplotlib') + mpl_logger.setLevel(logging.WARNING) + import matplotlib.pylab as plt + import numpy as np + + fig, ax = plt.subplots(figsize=(6, 4)) + im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', + interpolation='none') + fig.colorbar(im, ax=ax) + xlabel = 'Decoder timestep' + if info is not None: + xlabel += '\n\n' + info + plt.xlabel(xlabel) + plt.ylabel('Encoder timestep') + plt.tight_layout() + + fig.canvas.draw() + data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') + data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) + plt.close() + return data + + +def load_wav_to_torch(full_path): + sampling_rate, data = read(full_path) # scipy.io.wavfile + return torch.FloatTensor(data.astype(np.float32)), sampling_rate + + +def load_filepaths_and_text(filename, split="|"): + with open(filename, encoding='utf-8') as f: + filepaths_and_text = [line.strip().split(split) for line in f] + return filepaths_and_text + + +def get_hparams(init=True): + parser = argparse.ArgumentParser() + parser.add_argument('-c', '--config', type=str, default="./configs/base.json", + help='JSON file for configuration') + parser.add_argument('-m', '--model', type=str, required=True, + help='Model name') + parser.add_argument('-fg', '--fine_tuning_g', type=str, default=None, + help='If fine tuning, please specify model(G)') + parser.add_argument('-fd', '--fine_tuning_d', type=str, default=None, + help='If fine tuning, please specify model(D)') + + args = parser.parse_args() + model_dir = os.path.join("./logs", args.model) + + if not os.path.exists(model_dir): + os.makedirs(model_dir) + + config_path = args.config + config_save_path = os.path.join(model_dir, "config.json") + if init: + with open(config_path, "r") as f: + data = f.read() + with open(config_save_path, "w") as f: + f.write(data) + else: + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + #Added about fine tuning + if args.fine_tuning_g != None and args.fine_tuning_d != None: + config['fine_flag'] = True + config['fine_model_g'] = args.fine_tuning_g + config['fine_model_d'] = args.fine_tuning_d + else: + config['fine_flag'] = False + + hparams = HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_dir(model_dir): + config_save_path = os.path.join(model_dir, "config.json") + with open(config_save_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + hparams.model_dir = model_dir + return hparams + + +def get_hparams_from_file(config_path): + with open(config_path, "r") as f: + data = f.read() + config = json.loads(data) + + hparams =HParams(**config) + return hparams + + +def check_git_hash(model_dir): + source_dir = os.path.dirname(os.path.realpath(__file__)) + if not os.path.exists(os.path.join(source_dir, ".git")): + logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( + source_dir + )) + return + + cur_hash = subprocess.getoutput("git rev-parse HEAD") + + path = os.path.join(model_dir, "githash") + if os.path.exists(path): + saved_hash = open(path).read() + if saved_hash != cur_hash: + logger.warn("git hash values are different. {}(saved) != {}(current)".format( + saved_hash[:8], cur_hash[:8])) + else: + open(path, "w").write(cur_hash) + + +def get_logger(model_dir, filename="train.log"): + global logger + logger = logging.getLogger(os.path.basename(model_dir)) + logger.setLevel(logging.DEBUG) + + formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") + if not os.path.exists(model_dir): + os.makedirs(model_dir) + h = logging.FileHandler(os.path.join(model_dir, filename)) + h.setLevel(logging.DEBUG) + h.setFormatter(formatter) + logger.addHandler(h) + return logger + + +class HParams(): + def __init__(self, **kwargs): + for k, v in kwargs.items(): + if type(v) == dict: + v = HParams(**v) + self[k] = v + + def keys(self): + return self.__dict__.keys() + + def items(self): + return self.__dict__.items() + + def values(self): + return self.__dict__.values() + + def __len__(self): + return len(self.__dict__) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, value): + return setattr(self, key, value) + + def __contains__(self, key): + return key in self.__dict__ + + def __repr__(self): + return self.__dict__.__repr__() diff --git a/demo/requirements.txt b/demo/requirements.txt new file mode 100644 index 00000000..d6f87d68 --- /dev/null +++ b/demo/requirements.txt @@ -0,0 +1,85 @@ +absl-py==1.2.0 +appdirs==1.4.4 +attrs==22.1.0 +audioread==3.0.0 +Babel==2.10.3 +bidict==0.22.0 +cachetools==5.2.0 +certifi==2022.6.15 +cffi==1.15.1 +charset-normalizer==2.1.1 +clldutils==3.12.0 +colorama==0.4.5 +colorlog==6.6.0 +csvw==3.1.1 +cycler==0.11.0 +Cython==0.29.32 +decorator==5.1.1 +dlinfo==1.2.1 +dnspython==2.2.1 +eventlet==0.33.1 +fonttools==4.36.0 +google-auth==2.11.0 +google-auth-oauthlib==0.4.6 +greenlet==1.1.2 +grpcio==1.47.0 +idna==3.3 +importlib-metadata==4.12.0 +isodate==0.6.1 +joblib==1.1.0 +jsonschema==4.14.0 +kiwisolver==1.4.4 +language-tags==1.1.0 +librosa==0.9.2 +llvmlite==0.39.0 +Markdown==3.4.1 +MarkupSafe==2.1.1 +matplotlib==3.5.3 +numba==0.56.0 +numpy==1.22.4 +oauthlib==3.2.0 +packaging==21.3 +phonemizer==3.2.1 +Pillow==9.2.0 +pooch==1.6.0 +protobuf==3.19.4 +psutil==5.9.1 +py==1.11.0 +pyasn1==0.4.8 +pyasn1-modules==0.2.8 +pycparser==2.21 +pyopenjtalk==0.2.0 +pyparsing==3.0.9 +pyrsistent==0.18.1 +python-dateutil==2.8.2 +python-engineio==4.3.4 +python-socketio==5.7.1 +pytz==2022.2.1 +rdflib==6.2.0 +regex==2022.8.17 +requests==2.28.1 +requests-oauthlib==1.3.1 +resampy==0.4.0 +retry==0.9.2 +rfc3986==1.5.0 +rsa==4.9 +scikit-learn==1.1.2 +scipy==1.9.0 +segments==2.2.1 +six==1.16.0 +SoundFile==0.10.3.post1 +tabulate==0.8.10 +tensorboard==2.10.0 +tensorboard-data-server==0.6.1 +tensorboard-plugin-wit==1.8.1 +threadpoolctl==3.1.0 +torch==1.12.1+cu113 +torchaudio==0.12.1+cu113 +torchvision==0.13.1+cu113 +tqdm==4.64.0 +typing-extensions==4.3.0 +Unidecode==1.3.4 +uritemplate==4.1.1 +urllib3==1.26.11 +Werkzeug==2.2.2 +zipp==3.8.1 diff --git a/demo/serverSIO.py b/demo/serverSIO.py new file mode 100755 index 00000000..f2d4769e --- /dev/null +++ b/demo/serverSIO.py @@ -0,0 +1,96 @@ +import eventlet +import socketio +import sys +from datetime import datetime +import struct + +import torch +import numpy as np +from scipy.io.wavfile import write + +sys.path.append("mod") +sys.path.append("mod/text") +import utils +from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate +from models import SynthesizerTrn +from text.symbols import symbols + + + +class MyCustomNamespace(socketio.Namespace): # 名前空間を設定するクラス + def __init__(self, namespace, config, model): + super().__init__(namespace) + self.hps =utils.get_hparams_from_file(config) + self.net_g = SynthesizerTrn( + len(symbols), + self.hps.data.filter_length // 2 + 1, + self.hps.train.segment_size // self.hps.data.hop_length, + n_speakers=self.hps.data.n_speakers, + **self.hps.model) + self.net_g.eval() + self.gpu_num = torch.cuda.device_count() + print("GPU_NUM:",self.gpu_num) + utils.load_checkpoint( model, self.net_g, None) + + def on_connect(self, sid, environ): + print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid)) + # print('[{}] connet env : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , environ)) + + def on_request_message(self, sid, msg): # 送信してきたクライアントだけにメッセージを送る関数 + # print("MESSGaa", msg) + gpu = int(msg[0]) + srcId = int(msg[1]) + dstId = int(msg[2]) + timestamp = int(msg[3]) + data = msg[4] + # print(srcId, dstId, timestamp) + unpackedData = np.array(struct.unpack('<%sh'%(len(data) // struct.calcsize('=4" + } + }, + "node_modules/balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "dev": true + }, + "node_modules/brace-expansion": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", + "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==", + "dev": true, + "dependencies": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "node_modules/call-bind": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/call-bind/-/call-bind-1.0.2.tgz", + "integrity": "sha512-7O+FbCihrB5WGbFYesctwmTKae6rOiIzmz1icreWJ+0aA7LJfuqhEso2T9ncpcFtzMQtzXf2QGGueWJGTYsqrA==", + "dev": true, + "dependencies": { + "function-bind": "^1.1.1", + "get-intrinsic": "^1.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "node_modules/concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true + }, + "node_modules/cross-spawn": { + "version": "6.0.5", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-6.0.5.tgz", + "integrity": "sha512-eTVLrBSt7fjbDygz805pMnstIs2VTBNkRm0qxZd+M7A5XDdxVRWO5MxGBXZhjY4cqLYLdtrGqRf8mBPmzwSpWQ==", + "dev": true, + "dependencies": { + "nice-try": "^1.0.4", + "path-key": "^2.0.1", + "semver": "^5.5.0", + "shebang-command": "^1.2.0", + "which": "^1.2.9" + }, + "engines": { + "node": ">=4.8" + } + }, + "node_modules/define-properties": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/define-properties/-/define-properties-1.1.4.tgz", + "integrity": "sha512-uckOqKcfaVvtBdsVkdPv3XjveQJsNQqmhXgRi8uhvWWuPYZCNlzT8qAyblUgNoXdHdjMTzAqeGjAoli8f+bzPA==", + "dev": true, + "dependencies": { + "has-property-descriptors": "^1.0.0", + "object-keys": "^1.1.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/error-ex": { + "version": "1.3.2", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", + "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "dev": true, + "dependencies": { + "is-arrayish": "^0.2.1" + } + }, + "node_modules/es-abstract": { + "version": "1.20.1", + "resolved": "https://registry.npmjs.org/es-abstract/-/es-abstract-1.20.1.tgz", + "integrity": "sha512-WEm2oBhfoI2sImeM4OF2zE2V3BYdSF+KnSi9Sidz51fQHd7+JuF8Xgcj9/0o+OWeIeIS/MiuNnlruQrJf16GQA==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "es-to-primitive": "^1.2.1", + "function-bind": "^1.1.1", + "function.prototype.name": "^1.1.5", + "get-intrinsic": "^1.1.1", + "get-symbol-description": "^1.0.0", + "has": "^1.0.3", + "has-property-descriptors": "^1.0.0", + "has-symbols": "^1.0.3", + "internal-slot": "^1.0.3", + "is-callable": "^1.2.4", + "is-negative-zero": "^2.0.2", + "is-regex": "^1.1.4", + "is-shared-array-buffer": "^1.0.2", + "is-string": "^1.0.7", + "is-weakref": "^1.0.2", + "object-inspect": "^1.12.0", + "object-keys": "^1.1.1", + "object.assign": "^4.1.2", + "regexp.prototype.flags": "^1.4.3", + "string.prototype.trimend": "^1.0.5", + "string.prototype.trimstart": "^1.0.5", + "unbox-primitive": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/es-to-primitive": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/es-to-primitive/-/es-to-primitive-1.2.1.tgz", + "integrity": "sha512-QCOllgZJtaUo9miYBcLChTUaHNjJF3PYs1VidD7AwiEj1kYxKeQTctLAezAOH5ZKRH0g2IgPn6KwB4IT8iRpvA==", + "dev": true, + "dependencies": { + "is-callable": "^1.1.4", + "is-date-object": "^1.0.1", + "is-symbol": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/function-bind": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.1.tgz", + "integrity": "sha512-yIovAzMX49sF8Yl58fSCWJ5svSLuaibPxXQJFLmBObTuCr0Mf1KiPopGM9NiFjiYBCbfaa2Fh6breQ6ANVTI0A==", + "dev": true + }, + "node_modules/function.prototype.name": { + "version": "1.1.5", + "resolved": "https://registry.npmjs.org/function.prototype.name/-/function.prototype.name-1.1.5.tgz", + "integrity": "sha512-uN7m/BzVKQnCUF/iW8jYea67v++2u7m5UgENbHRtdDVclOUP+FMPlCNdmk0h/ysGyo2tavMJEDqJAkJdRa1vMA==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "es-abstract": "^1.19.0", + "functions-have-names": "^1.2.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/functions-have-names": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/functions-have-names/-/functions-have-names-1.2.3.tgz", + "integrity": "sha512-xckBUXyTIqT97tq2x2AMb+g163b5JFysYk0x4qxNFwbfQkmNZoiRHb6sPzI9/QV33WeuvVYBUIiD4NzNIyqaRQ==", + "dev": true, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-intrinsic": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.1.2.tgz", + "integrity": "sha512-Jfm3OyCxHh9DJyc28qGk+JmfkpO41A4XkneDSujN9MDXrm4oDKdHvndhZ2dN94+ERNfkYJWDclW6k2L/ZGHjXA==", + "dev": true, + "dependencies": { + "function-bind": "^1.1.1", + "has": "^1.0.3", + "has-symbols": "^1.0.3" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-symbol-description": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/get-symbol-description/-/get-symbol-description-1.0.0.tgz", + "integrity": "sha512-2EmdH1YvIQiZpltCNgkuiUnyukzxM/R6NDJX31Ke3BG1Nq5b0S2PhX59UKi9vZpPDQVdqn+1IcaAwnzTT5vCjw==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "get-intrinsic": "^1.1.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/graceful-fs": { + "version": "4.2.10", + "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.10.tgz", + "integrity": "sha512-9ByhssR2fPVsNZj478qUUbKfmL0+t5BDVyjShtyZZLiK7ZDAArFFfopyOTj0M05wE2tJPisA4iTnnXl2YoPvOA==", + "dev": true + }, + "node_modules/has": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz", + "integrity": "sha512-f2dvO0VU6Oej7RkWJGrehjbzMAjFp5/VKPp5tTpWIV4JHHZK1/BxbFRtf/siA2SWTe09caDmVtYYzWEIbBS4zw==", + "dev": true, + "dependencies": { + "function-bind": "^1.1.1" + }, + "engines": { + "node": ">= 0.4.0" + } + }, + "node_modules/has-bigints": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/has-bigints/-/has-bigints-1.0.2.tgz", + "integrity": "sha512-tSvCKtBr9lkF0Ex0aQiP9N+OpV4zi2r/Nee5VkRDbaqv35RLYMzbwQfFSZZH0kR+Rd6302UJZ2p/bJCEoR3VoQ==", + "dev": true, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/has-property-descriptors": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/has-property-descriptors/-/has-property-descriptors-1.0.0.tgz", + "integrity": "sha512-62DVLZGoiEBDHQyqG4w9xCuZ7eJEwNmJRWw2VY84Oedb7WFcA27fiEVe8oUQx9hAUJ4ekurquucTGwsyO1XGdQ==", + "dev": true, + "dependencies": { + "get-intrinsic": "^1.1.1" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/has-symbols": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.0.3.tgz", + "integrity": "sha512-l3LCuF6MgDNwTDKkdYGEihYjt5pRPbEg46rtlmnSPlUbgmB8LOIrKJbYYFBSbnPaJexMKtiPO8hmeRjRz2Td+A==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/has-tostringtag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.0.tgz", + "integrity": "sha512-kFjcSNhnlGV1kyoGk7OXKSawH5JOb/LzUc5w9B02hOTO0dfFRjbHQKvg1d6cf3HbeUmtU9VbbV3qzZ2Teh97WQ==", + "dev": true, + "dependencies": { + "has-symbols": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/hosted-git-info": { + "version": "2.8.9", + "resolved": "https://registry.npmjs.org/hosted-git-info/-/hosted-git-info-2.8.9.tgz", + "integrity": "sha512-mxIDAb9Lsm6DoOJ7xH+5+X4y1LU/4Hi50L9C5sIswK3JzULS4bwk1FvjdBgvYR4bzT4tuUQiC15FE2f5HbLvYw==", + "dev": true + }, + "node_modules/internal-slot": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/internal-slot/-/internal-slot-1.0.3.tgz", + "integrity": "sha512-O0DB1JC/sPyZl7cIo78n5dR7eUSwwpYPiXRhTzNxZVAMUuB8vlnRFyLxdrVToks6XPLVnFfbzaVd5WLjhgg+vA==", + "dev": true, + "dependencies": { + "get-intrinsic": "^1.1.0", + "has": "^1.0.3", + "side-channel": "^1.0.4" + }, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/is-arrayish": { + "version": "0.2.1", + "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", + "integrity": "sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==", + "dev": true + }, + "node_modules/is-bigint": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/is-bigint/-/is-bigint-1.0.4.tgz", + "integrity": "sha512-zB9CruMamjym81i2JZ3UMn54PKGsQzsJeo6xvN3HJJ4CAsQNB6iRutp2To77OfCNuoxspsIhzaPoO1zyCEhFOg==", + "dev": true, + "dependencies": { + "has-bigints": "^1.0.1" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-boolean-object": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/is-boolean-object/-/is-boolean-object-1.1.2.tgz", + "integrity": "sha512-gDYaKHJmnj4aWxyj6YHyXVpdQawtVLHU5cb+eztPGczf6cjuTdwve5ZIEfgXqH4e57An1D1AKf8CZ3kYrQRqYA==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "has-tostringtag": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-callable": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/is-callable/-/is-callable-1.2.4.tgz", + "integrity": "sha512-nsuwtxZfMX67Oryl9LCQ+upnC0Z0BgpwntpS89m1H/TLF0zNfzfLMV/9Wa/6MZsj0acpEjAO0KF1xT6ZdLl95w==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-core-module": { + "version": "2.10.0", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.10.0.tgz", + "integrity": "sha512-Erxj2n/LDAZ7H8WNJXd9tw38GYM3dv8rk8Zcs+jJuxYTW7sozH+SS8NtrSjVL1/vpLvWi1hxy96IzjJ3EHTJJg==", + "dev": true, + "dependencies": { + "has": "^1.0.3" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-date-object": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/is-date-object/-/is-date-object-1.0.5.tgz", + "integrity": "sha512-9YQaSxsAiSwcvS33MBk3wTCVnWK+HhF8VZR2jRxehM16QcVOdHqPn4VPHmRK4lSr38n9JriurInLcP90xsYNfQ==", + "dev": true, + "dependencies": { + "has-tostringtag": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-negative-zero": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/is-negative-zero/-/is-negative-zero-2.0.2.tgz", + "integrity": "sha512-dqJvarLawXsFbNDeJW7zAz8ItJ9cd28YufuuFzh0G8pNHjJMnY08Dv7sYX2uF5UpQOwieAeOExEYAWWfu7ZZUA==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-number-object": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/is-number-object/-/is-number-object-1.0.7.tgz", + "integrity": "sha512-k1U0IRzLMo7ZlYIfzRu23Oh6MiIFasgpb9X76eqfFZAqwH44UI4KTBvBYIZ1dSL9ZzChTB9ShHfLkR4pdW5krQ==", + "dev": true, + "dependencies": { + "has-tostringtag": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-regex": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/is-regex/-/is-regex-1.1.4.tgz", + "integrity": "sha512-kvRdxDsxZjhzUX07ZnLydzS1TU/TJlTUHHY4YLL87e37oUA49DfkLqgy+VjFocowy29cKvcSiu+kIv728jTTVg==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "has-tostringtag": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-shared-array-buffer": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/is-shared-array-buffer/-/is-shared-array-buffer-1.0.2.tgz", + "integrity": "sha512-sqN2UDu1/0y6uvXyStCOzyhAjCSlHceFoMKJW8W9EU9cvic/QdsZ0kEU93HEy3IUEFZIiH/3w+AH/UQbPHNdhA==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-string": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/is-string/-/is-string-1.0.7.tgz", + "integrity": "sha512-tE2UXzivje6ofPW7l23cjDOMa09gb7xlAqG6jG5ej6uPV32TlWP3NKPigtaGeHNu9fohccRYvIiZMfOOnOYUtg==", + "dev": true, + "dependencies": { + "has-tostringtag": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-symbol": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/is-symbol/-/is-symbol-1.0.4.tgz", + "integrity": "sha512-C/CPBqKWnvdcxqIARxyOh4v1UUEOCHpgDa0WYgpKDFMszcrPcffg5uhwSgPCLD2WWxmq6isisz87tzT01tuGhg==", + "dev": true, + "dependencies": { + "has-symbols": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-weakref": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/is-weakref/-/is-weakref-1.0.2.tgz", + "integrity": "sha512-qctsuLZmIQ0+vSSMfoVvyFe2+GSEvnmZ2ezTup1SBse9+twCCeial6EEi3Nc2KFcf6+qz2FBPnjXsk8xhKSaPQ==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "dev": true + }, + "node_modules/json-parse-better-errors": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/json-parse-better-errors/-/json-parse-better-errors-1.0.2.tgz", + "integrity": "sha512-mrqyZKfX5EhL7hvqcV6WG1yYjnjeuYDzDhhcAAUrq8Po85NBQBJP+ZDUT75qZQ98IkUoBqdkExkukOU7Ts2wrw==", + "dev": true + }, + "node_modules/load-json-file": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/load-json-file/-/load-json-file-4.0.0.tgz", + "integrity": "sha512-Kx8hMakjX03tiGTLAIdJ+lL0htKnXjEZN6hk/tozf/WOuYGdZBJrZ+rCJRbVCugsjB3jMLn9746NsQIf5VjBMw==", + "dev": true, + "dependencies": { + "graceful-fs": "^4.1.2", + "parse-json": "^4.0.0", + "pify": "^3.0.0", + "strip-bom": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/memorystream": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/memorystream/-/memorystream-0.3.1.tgz", + "integrity": "sha512-S3UwM3yj5mtUSEfP41UZmt/0SCoVYUcU1rkXv+BQ5Ig8ndL4sPoJNBUJERafdPb5jjHJGuMgytgKvKIf58XNBw==", + "dev": true, + "engines": { + "node": ">= 0.10.0" + } + }, + "node_modules/minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "dependencies": { + "brace-expansion": "^1.1.7" + }, + "engines": { + "node": "*" + } + }, + "node_modules/nice-try": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/nice-try/-/nice-try-1.0.5.tgz", + "integrity": "sha512-1nh45deeb5olNY7eX82BkPO7SSxR5SSYJiPTrTdFUVYwAl8CKMA5N9PjTYkHiRjisVcxcQ1HXdLhx2qxxJzLNQ==", + "dev": true + }, + "node_modules/normalize-package-data": { + "version": "2.5.0", + "resolved": "https://registry.npmjs.org/normalize-package-data/-/normalize-package-data-2.5.0.tgz", + "integrity": "sha512-/5CMN3T0R4XTj4DcGaexo+roZSdSFW/0AOOTROrjxzCG1wrWXEsGbRKevjlIL+ZDE4sZlJr5ED4YW0yqmkK+eA==", + "dev": true, + "dependencies": { + "hosted-git-info": "^2.1.4", + "resolve": "^1.10.0", + "semver": "2 || 3 || 4 || 5", + "validate-npm-package-license": "^3.0.1" + } + }, + "node_modules/npm-run-all": { + "version": "4.1.5", + "resolved": "https://registry.npmjs.org/npm-run-all/-/npm-run-all-4.1.5.tgz", + "integrity": "sha512-Oo82gJDAVcaMdi3nuoKFavkIHBRVqQ1qvMb+9LHk/cF4P6B2m8aP04hGf7oL6wZ9BuGwX1onlLhpuoofSyoQDQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "chalk": "^2.4.1", + "cross-spawn": "^6.0.5", + "memorystream": "^0.3.1", + "minimatch": "^3.0.4", + "pidtree": "^0.3.0", + "read-pkg": "^3.0.0", + "shell-quote": "^1.6.1", + "string.prototype.padend": "^3.0.0" + }, + "bin": { + "npm-run-all": "bin/npm-run-all/index.js", + "run-p": "bin/run-p/index.js", + "run-s": "bin/run-s/index.js" + }, + "engines": { + "node": ">= 4" + } + }, + "node_modules/object-inspect": { + "version": "1.12.2", + "resolved": "https://registry.npmjs.org/object-inspect/-/object-inspect-1.12.2.tgz", + "integrity": "sha512-z+cPxW0QGUp0mcqcsgQyLVRDoXFQbXOwBaqyF7VIgI4TWNQsDHrBpUQslRmIfAoYWdYzs6UlKJtB2XJpTaNSpQ==", + "dev": true, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/object-keys": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/object-keys/-/object-keys-1.1.1.tgz", + "integrity": "sha512-NuAESUOUMrlIXOfHKzD6bpPu3tYt3xvjNdRIQ+FeT0lNb4K8WR70CaDxhuNguS2XG+GjkyMwOzsN5ZktImfhLA==", + "dev": true, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/object.assign": { + "version": "4.1.4", + "resolved": "https://registry.npmjs.org/object.assign/-/object.assign-4.1.4.tgz", + "integrity": "sha512-1mxKf0e58bvyjSCtKYY4sRe9itRk3PJpquJOjeIkz885CczcI4IvJJDLPS72oowuSh+pBxUFROpX+TU++hxhZQ==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "has-symbols": "^1.0.3", + "object-keys": "^1.1.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/parse-json": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/parse-json/-/parse-json-4.0.0.tgz", + "integrity": "sha512-aOIos8bujGN93/8Ox/jPLh7RwVnPEysynVFE+fQZyg6jKELEHwzgKdLRFHUgXJL6kylijVSBC4BvN9OmsB48Rw==", + "dev": true, + "dependencies": { + "error-ex": "^1.3.1", + "json-parse-better-errors": "^1.0.1" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/path-key": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-2.0.1.tgz", + "integrity": "sha512-fEHGKCSmUSDPv4uoj8AlD+joPlq3peND+HRYyxFz4KPw4z926S/b8rIuFs2FYJg3BwsxJf6A9/3eIdLaYC+9Dw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "dev": true + }, + "node_modules/path-type": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/path-type/-/path-type-3.0.0.tgz", + "integrity": "sha512-T2ZUsdZFHgA3u4e5PfPbjd7HDDpxPnQb5jN0SrDsjNSuVXHJqtwTnWqG0B1jZrgmJ/7lj1EmVIByWt1gxGkWvg==", + "dev": true, + "dependencies": { + "pify": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/pidtree": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/pidtree/-/pidtree-0.3.1.tgz", + "integrity": "sha512-qQbW94hLHEqCg7nhby4yRC7G2+jYHY4Rguc2bjw7Uug4GIJuu1tvf2uHaZv5Q8zdt+WKJ6qK1FOI6amaWUo5FA==", + "dev": true, + "bin": { + "pidtree": "bin/pidtree.js" + }, + "engines": { + "node": ">=0.10" + } + }, + "node_modules/pify": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/pify/-/pify-3.0.0.tgz", + "integrity": "sha512-C3FsVNH1udSEX48gGX1xfvwTWfsYWj5U+8/uK15BGzIGrKoUpghX8hWZwa/OFnakBiiVNmBvemTJR5mcy7iPcg==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/read-pkg": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/read-pkg/-/read-pkg-3.0.0.tgz", + "integrity": "sha512-BLq/cCO9two+lBgiTYNqD6GdtK8s4NpaWrl6/rCO9w0TUS8oJl7cmToOZfRYllKTISY6nt1U7jQ53brmKqY6BA==", + "dev": true, + "dependencies": { + "load-json-file": "^4.0.0", + "normalize-package-data": "^2.3.2", + "path-type": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/regexp.prototype.flags": { + "version": "1.4.3", + "resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.4.3.tgz", + "integrity": "sha512-fjggEOO3slI6Wvgjwflkc4NFRCTZAu5CnNfBd5qOMYhWdn67nJBBu34/TkD++eeFmd8C9r9jfXJ27+nSiRkSUA==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "functions-have-names": "^1.2.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/resolve": { + "version": "1.22.1", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.1.tgz", + "integrity": "sha512-nBpuuYuY5jFsli/JIs1oldw6fOQCBioohqWZg/2hiaOybXOft4lonv85uDOKXdf8rhyK159cxU5cDcK/NKk8zw==", + "dev": true, + "dependencies": { + "is-core-module": "^2.9.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + }, + "bin": { + "resolve": "bin/resolve" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/semver": { + "version": "5.7.1", + "resolved": "https://registry.npmjs.org/semver/-/semver-5.7.1.tgz", + "integrity": "sha512-sauaDf/PZdVgrLTNYHRtpXa1iRiKcaebiKQ1BJdpQlWH2lCvexQdX55snPFyK7QzpudqbCI0qXFfOasHdyNDGQ==", + "dev": true, + "bin": { + "semver": "bin/semver" + } + }, + "node_modules/shebang-command": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-1.2.0.tgz", + "integrity": "sha512-EV3L1+UQWGor21OmnvojK36mhg+TyIKDh3iFBKBohr5xeXIhNBcx8oWdgkTEEQ+BEFFYdLRuqMfd5L84N1V5Vg==", + "dev": true, + "dependencies": { + "shebang-regex": "^1.0.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/shebang-regex": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-1.0.0.tgz", + "integrity": "sha512-wpoSFAxys6b2a2wHZ1XpDSgD7N9iVjg29Ph9uV/uaP9Ex/KXlkTZTeddxDPSYQpgvzKLGJke2UU0AzoGCjNIvQ==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/shell-quote": { + "version": "1.7.3", + "resolved": "https://registry.npmjs.org/shell-quote/-/shell-quote-1.7.3.tgz", + "integrity": "sha512-Vpfqwm4EnqGdlsBFNmHhxhElJYrdfcxPThu+ryKS5J8L/fhAwLazFZtq+S+TWZ9ANj2piSQLGj6NQg+lKPmxrw==", + "dev": true + }, + "node_modules/side-channel": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz", + "integrity": "sha512-q5XPytqFEIKHkGdiMIrY10mvLRvnQh42/+GoBlFW3b2LXLE2xxJpZFdm94we0BaoV3RwJyGqg5wS7epxTv0Zvw==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.0", + "get-intrinsic": "^1.0.2", + "object-inspect": "^1.9.0" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/spdx-correct": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/spdx-correct/-/spdx-correct-3.1.1.tgz", + "integrity": "sha512-cOYcUWwhCuHCXi49RhFRCyJEK3iPj1Ziz9DpViV3tbZOwXD49QzIN3MpOLJNxh2qwq2lJJZaKMVw9qNi4jTC0w==", + "dev": true, + "dependencies": { + "spdx-expression-parse": "^3.0.0", + "spdx-license-ids": "^3.0.0" + } + }, + "node_modules/spdx-exceptions": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/spdx-exceptions/-/spdx-exceptions-2.3.0.tgz", + "integrity": "sha512-/tTrYOC7PPI1nUAgx34hUpqXuyJG+DTHJTnIULG4rDygi4xu/tfgmq1e1cIRwRzwZgo4NLySi+ricLkZkw4i5A==", + "dev": true + }, + "node_modules/spdx-expression-parse": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/spdx-expression-parse/-/spdx-expression-parse-3.0.1.tgz", + "integrity": "sha512-cbqHunsQWnJNE6KhVSMsMeH5H/L9EpymbzqTQ3uLwNCLZ1Q481oWaofqH7nO6V07xlXwY6PhQdQ2IedWx/ZK4Q==", + "dev": true, + "dependencies": { + "spdx-exceptions": "^2.1.0", + "spdx-license-ids": "^3.0.0" + } + }, + "node_modules/spdx-license-ids": { + "version": "3.0.12", + "resolved": "https://registry.npmjs.org/spdx-license-ids/-/spdx-license-ids-3.0.12.tgz", + "integrity": "sha512-rr+VVSXtRhO4OHbXUiAF7xW3Bo9DuuF6C5jH+q/x15j2jniycgKbxU09Hr0WqlSLUs4i4ltHGXqTe7VHclYWyA==", + "dev": true + }, + "node_modules/string.prototype.padend": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/string.prototype.padend/-/string.prototype.padend-3.1.3.tgz", + "integrity": "sha512-jNIIeokznm8SD/TZISQsZKYu7RJyheFNt84DUPrh482GC8RVp2MKqm2O5oBRdGxbDQoXrhhWtPIWQOiy20svUg==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "es-abstract": "^1.19.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/string.prototype.trimend": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/string.prototype.trimend/-/string.prototype.trimend-1.0.5.tgz", + "integrity": "sha512-I7RGvmjV4pJ7O3kdf+LXFpVfdNOxtCW/2C8f6jNiW4+PQchwxkCDzlk1/7p+Wl4bqFIZeF47qAHXLuHHWKAxog==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "es-abstract": "^1.19.5" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/string.prototype.trimstart": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/string.prototype.trimstart/-/string.prototype.trimstart-1.0.5.tgz", + "integrity": "sha512-THx16TJCGlsN0o6dl2o6ncWUsdgnLRSA23rRE5pyGBw/mLr3Ej/R2LaqCtgP8VNMGZsvMWnf9ooZPyY2bHvUFg==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "es-abstract": "^1.19.5" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/strip-bom": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-3.0.0.tgz", + "integrity": "sha512-vavAMRXOgBVNF6nyEEmL3DBK19iRpDcoIwW+swQ+CbGiu7lju6t+JklA1MHweoWtadgt4ISVUsXLyDq34ddcwA==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/unbox-primitive": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz", + "integrity": "sha512-61pPlCD9h51VoreyJ0BReideM3MDKMKnh6+V9L08331ipq6Q8OFXZYiqP6n/tbHx4s5I9uRhcye6BrbkizkBDw==", + "dev": true, + "dependencies": { + "call-bind": "^1.0.2", + "has-bigints": "^1.0.2", + "has-symbols": "^1.0.3", + "which-boxed-primitive": "^1.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/validate-npm-package-license": { + "version": "3.0.4", + "resolved": "https://registry.npmjs.org/validate-npm-package-license/-/validate-npm-package-license-3.0.4.tgz", + "integrity": "sha512-DpKm2Ui/xN7/HQKCtpZxoRWBhZ9Z0kqtygG8XCgNQ8ZlDnxuQmWhj566j8fN4Cu3/JmbhsDo7fcAJq4s9h27Ew==", + "dev": true, + "dependencies": { + "spdx-correct": "^3.0.0", + "spdx-expression-parse": "^3.0.0" + } + }, + "node_modules/which": { + "version": "1.3.1", + "resolved": "https://registry.npmjs.org/which/-/which-1.3.1.tgz", + "integrity": "sha512-HxJdYWq1MTIQbJ3nw0cqssHoTNU267KlrDuGZ1WYlxDStUtKUhOaJmh112/TZmHxxUfuJqPXSOm7tDyas0OSIQ==", + "dev": true, + "dependencies": { + "isexe": "^2.0.0" + }, + "bin": { + "which": "bin/which" + } + }, + "node_modules/which-boxed-primitive": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/which-boxed-primitive/-/which-boxed-primitive-1.0.2.tgz", + "integrity": "sha512-bwZdv0AKLpplFY2KZRX6TvyuN7ojjr7lwkg6ml0roIy9YeuSr7JS372qlNW18UQYzgYK9ziGcerWqZOmEn9VNg==", + "dev": true, + "dependencies": { + "is-bigint": "^1.0.1", + "is-boolean-object": "^1.1.0", + "is-number-object": "^1.0.4", + "is-string": "^1.0.5", + "is-symbol": "^1.0.3" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + } + }, + "dependencies": { + "ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "requires": { + "color-convert": "^1.9.0" + } + }, + "balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "dev": true + }, + "brace-expansion": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", + "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==", + "dev": true, + "requires": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "call-bind": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/call-bind/-/call-bind-1.0.2.tgz", + "integrity": "sha512-7O+FbCihrB5WGbFYesctwmTKae6rOiIzmz1icreWJ+0aA7LJfuqhEso2T9ncpcFtzMQtzXf2QGGueWJGTYsqrA==", + "dev": true, + "requires": { + "function-bind": "^1.1.1", + "get-intrinsic": "^1.0.2" + } + }, + "chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "requires": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + } + }, + "color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "requires": { + "color-name": "1.1.3" + } + }, + "color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true + }, + "cross-spawn": { + "version": "6.0.5", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-6.0.5.tgz", + "integrity": "sha512-eTVLrBSt7fjbDygz805pMnstIs2VTBNkRm0qxZd+M7A5XDdxVRWO5MxGBXZhjY4cqLYLdtrGqRf8mBPmzwSpWQ==", + "dev": true, + "requires": { + "nice-try": "^1.0.4", + "path-key": "^2.0.1", + "semver": "^5.5.0", + "shebang-command": "^1.2.0", + "which": "^1.2.9" + } + }, + "define-properties": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/define-properties/-/define-properties-1.1.4.tgz", + "integrity": "sha512-uckOqKcfaVvtBdsVkdPv3XjveQJsNQqmhXgRi8uhvWWuPYZCNlzT8qAyblUgNoXdHdjMTzAqeGjAoli8f+bzPA==", + "dev": true, + "requires": { + "has-property-descriptors": "^1.0.0", + "object-keys": "^1.1.1" + } + }, + "error-ex": { + "version": "1.3.2", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", + "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "dev": true, + "requires": { + "is-arrayish": "^0.2.1" + } + }, + "es-abstract": { + "version": "1.20.1", + "resolved": "https://registry.npmjs.org/es-abstract/-/es-abstract-1.20.1.tgz", + "integrity": "sha512-WEm2oBhfoI2sImeM4OF2zE2V3BYdSF+KnSi9Sidz51fQHd7+JuF8Xgcj9/0o+OWeIeIS/MiuNnlruQrJf16GQA==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "es-to-primitive": "^1.2.1", + "function-bind": "^1.1.1", + "function.prototype.name": "^1.1.5", + "get-intrinsic": "^1.1.1", + "get-symbol-description": "^1.0.0", + "has": "^1.0.3", + "has-property-descriptors": "^1.0.0", + "has-symbols": "^1.0.3", + "internal-slot": "^1.0.3", + "is-callable": "^1.2.4", + "is-negative-zero": "^2.0.2", + "is-regex": "^1.1.4", + "is-shared-array-buffer": "^1.0.2", + "is-string": "^1.0.7", + "is-weakref": "^1.0.2", + "object-inspect": "^1.12.0", + "object-keys": "^1.1.1", + "object.assign": "^4.1.2", + "regexp.prototype.flags": "^1.4.3", + "string.prototype.trimend": "^1.0.5", + "string.prototype.trimstart": "^1.0.5", + "unbox-primitive": "^1.0.2" + } + }, + "es-to-primitive": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/es-to-primitive/-/es-to-primitive-1.2.1.tgz", + "integrity": "sha512-QCOllgZJtaUo9miYBcLChTUaHNjJF3PYs1VidD7AwiEj1kYxKeQTctLAezAOH5ZKRH0g2IgPn6KwB4IT8iRpvA==", + "dev": true, + "requires": { + "is-callable": "^1.1.4", + "is-date-object": "^1.0.1", + "is-symbol": "^1.0.2" + } + }, + "escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true + }, + "function-bind": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.1.tgz", + "integrity": "sha512-yIovAzMX49sF8Yl58fSCWJ5svSLuaibPxXQJFLmBObTuCr0Mf1KiPopGM9NiFjiYBCbfaa2Fh6breQ6ANVTI0A==", + "dev": true + }, + "function.prototype.name": { + "version": "1.1.5", + "resolved": "https://registry.npmjs.org/function.prototype.name/-/function.prototype.name-1.1.5.tgz", + "integrity": "sha512-uN7m/BzVKQnCUF/iW8jYea67v++2u7m5UgENbHRtdDVclOUP+FMPlCNdmk0h/ysGyo2tavMJEDqJAkJdRa1vMA==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "es-abstract": "^1.19.0", + "functions-have-names": "^1.2.2" + } + }, + "functions-have-names": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/functions-have-names/-/functions-have-names-1.2.3.tgz", + "integrity": "sha512-xckBUXyTIqT97tq2x2AMb+g163b5JFysYk0x4qxNFwbfQkmNZoiRHb6sPzI9/QV33WeuvVYBUIiD4NzNIyqaRQ==", + "dev": true + }, + "get-intrinsic": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.1.2.tgz", + "integrity": "sha512-Jfm3OyCxHh9DJyc28qGk+JmfkpO41A4XkneDSujN9MDXrm4oDKdHvndhZ2dN94+ERNfkYJWDclW6k2L/ZGHjXA==", + "dev": true, + "requires": { + "function-bind": "^1.1.1", + "has": "^1.0.3", + "has-symbols": "^1.0.3" + } + }, + "get-symbol-description": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/get-symbol-description/-/get-symbol-description-1.0.0.tgz", + "integrity": "sha512-2EmdH1YvIQiZpltCNgkuiUnyukzxM/R6NDJX31Ke3BG1Nq5b0S2PhX59UKi9vZpPDQVdqn+1IcaAwnzTT5vCjw==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "get-intrinsic": "^1.1.1" + } + }, + "graceful-fs": { + "version": "4.2.10", + "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.10.tgz", + "integrity": "sha512-9ByhssR2fPVsNZj478qUUbKfmL0+t5BDVyjShtyZZLiK7ZDAArFFfopyOTj0M05wE2tJPisA4iTnnXl2YoPvOA==", + "dev": true + }, + "has": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz", + "integrity": "sha512-f2dvO0VU6Oej7RkWJGrehjbzMAjFp5/VKPp5tTpWIV4JHHZK1/BxbFRtf/siA2SWTe09caDmVtYYzWEIbBS4zw==", + "dev": true, + "requires": { + "function-bind": "^1.1.1" + } + }, + "has-bigints": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/has-bigints/-/has-bigints-1.0.2.tgz", + "integrity": "sha512-tSvCKtBr9lkF0Ex0aQiP9N+OpV4zi2r/Nee5VkRDbaqv35RLYMzbwQfFSZZH0kR+Rd6302UJZ2p/bJCEoR3VoQ==", + "dev": true + }, + "has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true + }, + "has-property-descriptors": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/has-property-descriptors/-/has-property-descriptors-1.0.0.tgz", + "integrity": "sha512-62DVLZGoiEBDHQyqG4w9xCuZ7eJEwNmJRWw2VY84Oedb7WFcA27fiEVe8oUQx9hAUJ4ekurquucTGwsyO1XGdQ==", + "dev": true, + "requires": { + "get-intrinsic": "^1.1.1" + } + }, + "has-symbols": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.0.3.tgz", + "integrity": "sha512-l3LCuF6MgDNwTDKkdYGEihYjt5pRPbEg46rtlmnSPlUbgmB8LOIrKJbYYFBSbnPaJexMKtiPO8hmeRjRz2Td+A==", + "dev": true + }, + "has-tostringtag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.0.tgz", + "integrity": "sha512-kFjcSNhnlGV1kyoGk7OXKSawH5JOb/LzUc5w9B02hOTO0dfFRjbHQKvg1d6cf3HbeUmtU9VbbV3qzZ2Teh97WQ==", + "dev": true, + "requires": { + "has-symbols": "^1.0.2" + } + }, + "hosted-git-info": { + "version": "2.8.9", + "resolved": "https://registry.npmjs.org/hosted-git-info/-/hosted-git-info-2.8.9.tgz", + "integrity": "sha512-mxIDAb9Lsm6DoOJ7xH+5+X4y1LU/4Hi50L9C5sIswK3JzULS4bwk1FvjdBgvYR4bzT4tuUQiC15FE2f5HbLvYw==", + "dev": true + }, + "internal-slot": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/internal-slot/-/internal-slot-1.0.3.tgz", + "integrity": "sha512-O0DB1JC/sPyZl7cIo78n5dR7eUSwwpYPiXRhTzNxZVAMUuB8vlnRFyLxdrVToks6XPLVnFfbzaVd5WLjhgg+vA==", + "dev": true, + "requires": { + "get-intrinsic": "^1.1.0", + "has": "^1.0.3", + "side-channel": "^1.0.4" + } + }, + "is-arrayish": { + "version": "0.2.1", + "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", + "integrity": "sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==", + "dev": true + }, + "is-bigint": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/is-bigint/-/is-bigint-1.0.4.tgz", + "integrity": "sha512-zB9CruMamjym81i2JZ3UMn54PKGsQzsJeo6xvN3HJJ4CAsQNB6iRutp2To77OfCNuoxspsIhzaPoO1zyCEhFOg==", + "dev": true, + "requires": { + "has-bigints": "^1.0.1" + } + }, + "is-boolean-object": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/is-boolean-object/-/is-boolean-object-1.1.2.tgz", + "integrity": "sha512-gDYaKHJmnj4aWxyj6YHyXVpdQawtVLHU5cb+eztPGczf6cjuTdwve5ZIEfgXqH4e57An1D1AKf8CZ3kYrQRqYA==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "has-tostringtag": "^1.0.0" + } + }, + "is-callable": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/is-callable/-/is-callable-1.2.4.tgz", + "integrity": "sha512-nsuwtxZfMX67Oryl9LCQ+upnC0Z0BgpwntpS89m1H/TLF0zNfzfLMV/9Wa/6MZsj0acpEjAO0KF1xT6ZdLl95w==", + "dev": true + }, + "is-core-module": { + "version": "2.10.0", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.10.0.tgz", + "integrity": "sha512-Erxj2n/LDAZ7H8WNJXd9tw38GYM3dv8rk8Zcs+jJuxYTW7sozH+SS8NtrSjVL1/vpLvWi1hxy96IzjJ3EHTJJg==", + "dev": true, + "requires": { + "has": "^1.0.3" + } + }, + "is-date-object": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/is-date-object/-/is-date-object-1.0.5.tgz", + "integrity": "sha512-9YQaSxsAiSwcvS33MBk3wTCVnWK+HhF8VZR2jRxehM16QcVOdHqPn4VPHmRK4lSr38n9JriurInLcP90xsYNfQ==", + "dev": true, + "requires": { + "has-tostringtag": "^1.0.0" + } + }, + "is-negative-zero": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/is-negative-zero/-/is-negative-zero-2.0.2.tgz", + "integrity": "sha512-dqJvarLawXsFbNDeJW7zAz8ItJ9cd28YufuuFzh0G8pNHjJMnY08Dv7sYX2uF5UpQOwieAeOExEYAWWfu7ZZUA==", + "dev": true + }, + "is-number-object": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/is-number-object/-/is-number-object-1.0.7.tgz", + "integrity": "sha512-k1U0IRzLMo7ZlYIfzRu23Oh6MiIFasgpb9X76eqfFZAqwH44UI4KTBvBYIZ1dSL9ZzChTB9ShHfLkR4pdW5krQ==", + "dev": true, + "requires": { + "has-tostringtag": "^1.0.0" + } + }, + "is-regex": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/is-regex/-/is-regex-1.1.4.tgz", + "integrity": "sha512-kvRdxDsxZjhzUX07ZnLydzS1TU/TJlTUHHY4YLL87e37oUA49DfkLqgy+VjFocowy29cKvcSiu+kIv728jTTVg==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "has-tostringtag": "^1.0.0" + } + }, + "is-shared-array-buffer": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/is-shared-array-buffer/-/is-shared-array-buffer-1.0.2.tgz", + "integrity": "sha512-sqN2UDu1/0y6uvXyStCOzyhAjCSlHceFoMKJW8W9EU9cvic/QdsZ0kEU93HEy3IUEFZIiH/3w+AH/UQbPHNdhA==", + "dev": true, + "requires": { + "call-bind": "^1.0.2" + } + }, + "is-string": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/is-string/-/is-string-1.0.7.tgz", + "integrity": "sha512-tE2UXzivje6ofPW7l23cjDOMa09gb7xlAqG6jG5ej6uPV32TlWP3NKPigtaGeHNu9fohccRYvIiZMfOOnOYUtg==", + "dev": true, + "requires": { + "has-tostringtag": "^1.0.0" + } + }, + "is-symbol": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/is-symbol/-/is-symbol-1.0.4.tgz", + "integrity": "sha512-C/CPBqKWnvdcxqIARxyOh4v1UUEOCHpgDa0WYgpKDFMszcrPcffg5uhwSgPCLD2WWxmq6isisz87tzT01tuGhg==", + "dev": true, + "requires": { + "has-symbols": "^1.0.2" + } + }, + "is-weakref": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/is-weakref/-/is-weakref-1.0.2.tgz", + "integrity": "sha512-qctsuLZmIQ0+vSSMfoVvyFe2+GSEvnmZ2ezTup1SBse9+twCCeial6EEi3Nc2KFcf6+qz2FBPnjXsk8xhKSaPQ==", + "dev": true, + "requires": { + "call-bind": "^1.0.2" + } + }, + "isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "dev": true + }, + "json-parse-better-errors": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/json-parse-better-errors/-/json-parse-better-errors-1.0.2.tgz", + "integrity": "sha512-mrqyZKfX5EhL7hvqcV6WG1yYjnjeuYDzDhhcAAUrq8Po85NBQBJP+ZDUT75qZQ98IkUoBqdkExkukOU7Ts2wrw==", + "dev": true + }, + "load-json-file": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/load-json-file/-/load-json-file-4.0.0.tgz", + "integrity": "sha512-Kx8hMakjX03tiGTLAIdJ+lL0htKnXjEZN6hk/tozf/WOuYGdZBJrZ+rCJRbVCugsjB3jMLn9746NsQIf5VjBMw==", + "dev": true, + "requires": { + "graceful-fs": "^4.1.2", + "parse-json": "^4.0.0", + "pify": "^3.0.0", + "strip-bom": "^3.0.0" + } + }, + "memorystream": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/memorystream/-/memorystream-0.3.1.tgz", + "integrity": "sha512-S3UwM3yj5mtUSEfP41UZmt/0SCoVYUcU1rkXv+BQ5Ig8ndL4sPoJNBUJERafdPb5jjHJGuMgytgKvKIf58XNBw==", + "dev": true + }, + "minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "requires": { + "brace-expansion": "^1.1.7" + } + }, + "nice-try": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/nice-try/-/nice-try-1.0.5.tgz", + "integrity": "sha512-1nh45deeb5olNY7eX82BkPO7SSxR5SSYJiPTrTdFUVYwAl8CKMA5N9PjTYkHiRjisVcxcQ1HXdLhx2qxxJzLNQ==", + "dev": true + }, + "normalize-package-data": { + "version": "2.5.0", + "resolved": "https://registry.npmjs.org/normalize-package-data/-/normalize-package-data-2.5.0.tgz", + "integrity": "sha512-/5CMN3T0R4XTj4DcGaexo+roZSdSFW/0AOOTROrjxzCG1wrWXEsGbRKevjlIL+ZDE4sZlJr5ED4YW0yqmkK+eA==", + "dev": true, + "requires": { + "hosted-git-info": "^2.1.4", + "resolve": "^1.10.0", + "semver": "2 || 3 || 4 || 5", + "validate-npm-package-license": "^3.0.1" + } + }, + "npm-run-all": { + "version": "4.1.5", + "resolved": "https://registry.npmjs.org/npm-run-all/-/npm-run-all-4.1.5.tgz", + "integrity": "sha512-Oo82gJDAVcaMdi3nuoKFavkIHBRVqQ1qvMb+9LHk/cF4P6B2m8aP04hGf7oL6wZ9BuGwX1onlLhpuoofSyoQDQ==", + "dev": true, + "requires": { + "ansi-styles": "^3.2.1", + "chalk": "^2.4.1", + "cross-spawn": "^6.0.5", + "memorystream": "^0.3.1", + "minimatch": "^3.0.4", + "pidtree": "^0.3.0", + "read-pkg": "^3.0.0", + "shell-quote": "^1.6.1", + "string.prototype.padend": "^3.0.0" + } + }, + "object-inspect": { + "version": "1.12.2", + "resolved": "https://registry.npmjs.org/object-inspect/-/object-inspect-1.12.2.tgz", + "integrity": "sha512-z+cPxW0QGUp0mcqcsgQyLVRDoXFQbXOwBaqyF7VIgI4TWNQsDHrBpUQslRmIfAoYWdYzs6UlKJtB2XJpTaNSpQ==", + "dev": true + }, + "object-keys": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/object-keys/-/object-keys-1.1.1.tgz", + "integrity": "sha512-NuAESUOUMrlIXOfHKzD6bpPu3tYt3xvjNdRIQ+FeT0lNb4K8WR70CaDxhuNguS2XG+GjkyMwOzsN5ZktImfhLA==", + "dev": true + }, + "object.assign": { + "version": "4.1.4", + "resolved": "https://registry.npmjs.org/object.assign/-/object.assign-4.1.4.tgz", + "integrity": "sha512-1mxKf0e58bvyjSCtKYY4sRe9itRk3PJpquJOjeIkz885CczcI4IvJJDLPS72oowuSh+pBxUFROpX+TU++hxhZQ==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "has-symbols": "^1.0.3", + "object-keys": "^1.1.1" + } + }, + "parse-json": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/parse-json/-/parse-json-4.0.0.tgz", + "integrity": "sha512-aOIos8bujGN93/8Ox/jPLh7RwVnPEysynVFE+fQZyg6jKELEHwzgKdLRFHUgXJL6kylijVSBC4BvN9OmsB48Rw==", + "dev": true, + "requires": { + "error-ex": "^1.3.1", + "json-parse-better-errors": "^1.0.1" + } + }, + "path-key": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-2.0.1.tgz", + "integrity": "sha512-fEHGKCSmUSDPv4uoj8AlD+joPlq3peND+HRYyxFz4KPw4z926S/b8rIuFs2FYJg3BwsxJf6A9/3eIdLaYC+9Dw==", + "dev": true + }, + "path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "dev": true + }, + "path-type": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/path-type/-/path-type-3.0.0.tgz", + "integrity": "sha512-T2ZUsdZFHgA3u4e5PfPbjd7HDDpxPnQb5jN0SrDsjNSuVXHJqtwTnWqG0B1jZrgmJ/7lj1EmVIByWt1gxGkWvg==", + "dev": true, + "requires": { + "pify": "^3.0.0" + } + }, + "pidtree": { + "version": "0.3.1", + "resolved": "https://registry.npmjs.org/pidtree/-/pidtree-0.3.1.tgz", + "integrity": "sha512-qQbW94hLHEqCg7nhby4yRC7G2+jYHY4Rguc2bjw7Uug4GIJuu1tvf2uHaZv5Q8zdt+WKJ6qK1FOI6amaWUo5FA==", + "dev": true + }, + "pify": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/pify/-/pify-3.0.0.tgz", + "integrity": "sha512-C3FsVNH1udSEX48gGX1xfvwTWfsYWj5U+8/uK15BGzIGrKoUpghX8hWZwa/OFnakBiiVNmBvemTJR5mcy7iPcg==", + "dev": true + }, + "read-pkg": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/read-pkg/-/read-pkg-3.0.0.tgz", + "integrity": "sha512-BLq/cCO9two+lBgiTYNqD6GdtK8s4NpaWrl6/rCO9w0TUS8oJl7cmToOZfRYllKTISY6nt1U7jQ53brmKqY6BA==", + "dev": true, + "requires": { + "load-json-file": "^4.0.0", + "normalize-package-data": "^2.3.2", + "path-type": "^3.0.0" + } + }, + "regexp.prototype.flags": { + "version": "1.4.3", + "resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.4.3.tgz", + "integrity": "sha512-fjggEOO3slI6Wvgjwflkc4NFRCTZAu5CnNfBd5qOMYhWdn67nJBBu34/TkD++eeFmd8C9r9jfXJ27+nSiRkSUA==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "functions-have-names": "^1.2.2" + } + }, + "resolve": { + "version": "1.22.1", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.1.tgz", + "integrity": "sha512-nBpuuYuY5jFsli/JIs1oldw6fOQCBioohqWZg/2hiaOybXOft4lonv85uDOKXdf8rhyK159cxU5cDcK/NKk8zw==", + "dev": true, + "requires": { + "is-core-module": "^2.9.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + } + }, + "semver": { + "version": "5.7.1", + "resolved": "https://registry.npmjs.org/semver/-/semver-5.7.1.tgz", + "integrity": "sha512-sauaDf/PZdVgrLTNYHRtpXa1iRiKcaebiKQ1BJdpQlWH2lCvexQdX55snPFyK7QzpudqbCI0qXFfOasHdyNDGQ==", + "dev": true + }, + "shebang-command": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-1.2.0.tgz", + "integrity": "sha512-EV3L1+UQWGor21OmnvojK36mhg+TyIKDh3iFBKBohr5xeXIhNBcx8oWdgkTEEQ+BEFFYdLRuqMfd5L84N1V5Vg==", + "dev": true, + "requires": { + "shebang-regex": "^1.0.0" + } + }, + "shebang-regex": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-1.0.0.tgz", + "integrity": "sha512-wpoSFAxys6b2a2wHZ1XpDSgD7N9iVjg29Ph9uV/uaP9Ex/KXlkTZTeddxDPSYQpgvzKLGJke2UU0AzoGCjNIvQ==", + "dev": true + }, + "shell-quote": { + "version": "1.7.3", + "resolved": "https://registry.npmjs.org/shell-quote/-/shell-quote-1.7.3.tgz", + "integrity": "sha512-Vpfqwm4EnqGdlsBFNmHhxhElJYrdfcxPThu+ryKS5J8L/fhAwLazFZtq+S+TWZ9ANj2piSQLGj6NQg+lKPmxrw==", + "dev": true + }, + "side-channel": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz", + "integrity": "sha512-q5XPytqFEIKHkGdiMIrY10mvLRvnQh42/+GoBlFW3b2LXLE2xxJpZFdm94we0BaoV3RwJyGqg5wS7epxTv0Zvw==", + "dev": true, + "requires": { + "call-bind": "^1.0.0", + "get-intrinsic": "^1.0.2", + "object-inspect": "^1.9.0" + } + }, + "spdx-correct": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/spdx-correct/-/spdx-correct-3.1.1.tgz", + "integrity": "sha512-cOYcUWwhCuHCXi49RhFRCyJEK3iPj1Ziz9DpViV3tbZOwXD49QzIN3MpOLJNxh2qwq2lJJZaKMVw9qNi4jTC0w==", + "dev": true, + "requires": { + "spdx-expression-parse": "^3.0.0", + "spdx-license-ids": "^3.0.0" + } + }, + "spdx-exceptions": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/spdx-exceptions/-/spdx-exceptions-2.3.0.tgz", + "integrity": "sha512-/tTrYOC7PPI1nUAgx34hUpqXuyJG+DTHJTnIULG4rDygi4xu/tfgmq1e1cIRwRzwZgo4NLySi+ricLkZkw4i5A==", + "dev": true + }, + "spdx-expression-parse": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/spdx-expression-parse/-/spdx-expression-parse-3.0.1.tgz", + "integrity": "sha512-cbqHunsQWnJNE6KhVSMsMeH5H/L9EpymbzqTQ3uLwNCLZ1Q481oWaofqH7nO6V07xlXwY6PhQdQ2IedWx/ZK4Q==", + "dev": true, + "requires": { + "spdx-exceptions": "^2.1.0", + "spdx-license-ids": "^3.0.0" + } + }, + "spdx-license-ids": { + "version": "3.0.12", + "resolved": "https://registry.npmjs.org/spdx-license-ids/-/spdx-license-ids-3.0.12.tgz", + "integrity": "sha512-rr+VVSXtRhO4OHbXUiAF7xW3Bo9DuuF6C5jH+q/x15j2jniycgKbxU09Hr0WqlSLUs4i4ltHGXqTe7VHclYWyA==", + "dev": true + }, + "string.prototype.padend": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/string.prototype.padend/-/string.prototype.padend-3.1.3.tgz", + "integrity": "sha512-jNIIeokznm8SD/TZISQsZKYu7RJyheFNt84DUPrh482GC8RVp2MKqm2O5oBRdGxbDQoXrhhWtPIWQOiy20svUg==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.3", + "es-abstract": "^1.19.1" + } + }, + "string.prototype.trimend": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/string.prototype.trimend/-/string.prototype.trimend-1.0.5.tgz", + "integrity": "sha512-I7RGvmjV4pJ7O3kdf+LXFpVfdNOxtCW/2C8f6jNiW4+PQchwxkCDzlk1/7p+Wl4bqFIZeF47qAHXLuHHWKAxog==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "es-abstract": "^1.19.5" + } + }, + "string.prototype.trimstart": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/string.prototype.trimstart/-/string.prototype.trimstart-1.0.5.tgz", + "integrity": "sha512-THx16TJCGlsN0o6dl2o6ncWUsdgnLRSA23rRE5pyGBw/mLr3Ej/R2LaqCtgP8VNMGZsvMWnf9ooZPyY2bHvUFg==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "define-properties": "^1.1.4", + "es-abstract": "^1.19.5" + } + }, + "strip-bom": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-3.0.0.tgz", + "integrity": "sha512-vavAMRXOgBVNF6nyEEmL3DBK19iRpDcoIwW+swQ+CbGiu7lju6t+JklA1MHweoWtadgt4ISVUsXLyDq34ddcwA==", + "dev": true + }, + "supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "requires": { + "has-flag": "^3.0.0" + } + }, + "supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "dev": true + }, + "unbox-primitive": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz", + "integrity": "sha512-61pPlCD9h51VoreyJ0BReideM3MDKMKnh6+V9L08331ipq6Q8OFXZYiqP6n/tbHx4s5I9uRhcye6BrbkizkBDw==", + "dev": true, + "requires": { + "call-bind": "^1.0.2", + "has-bigints": "^1.0.2", + "has-symbols": "^1.0.3", + "which-boxed-primitive": "^1.0.2" + } + }, + "validate-npm-package-license": { + "version": "3.0.4", + "resolved": "https://registry.npmjs.org/validate-npm-package-license/-/validate-npm-package-license-3.0.4.tgz", + "integrity": "sha512-DpKm2Ui/xN7/HQKCtpZxoRWBhZ9Z0kqtygG8XCgNQ8ZlDnxuQmWhj566j8fN4Cu3/JmbhsDo7fcAJq4s9h27Ew==", + "dev": true, + "requires": { + "spdx-correct": "^3.0.0", + "spdx-expression-parse": "^3.0.0" + } + }, + "which": { + "version": "1.3.1", + "resolved": "https://registry.npmjs.org/which/-/which-1.3.1.tgz", + "integrity": "sha512-HxJdYWq1MTIQbJ3nw0cqssHoTNU267KlrDuGZ1WYlxDStUtKUhOaJmh112/TZmHxxUfuJqPXSOm7tDyas0OSIQ==", + "dev": true, + "requires": { + "isexe": "^2.0.0" + } + }, + "which-boxed-primitive": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/which-boxed-primitive/-/which-boxed-primitive-1.0.2.tgz", + "integrity": "sha512-bwZdv0AKLpplFY2KZRX6TvyuN7ojjr7lwkg6ml0roIy9YeuSr7JS372qlNW18UQYzgYK9ziGcerWqZOmEn9VNg==", + "dev": true, + "requires": { + "is-bigint": "^1.0.1", + "is-boolean-object": "^1.1.0", + "is-number-object": "^1.0.4", + "is-string": "^1.0.5", + "is-symbol": "^1.0.3" + } + } + } +} diff --git a/package.json b/package.json index bf3b6c2c..4cd2ac3d 100644 --- a/package.json +++ b/package.json @@ -6,6 +6,9 @@ "scripts": { "build:docker": "date +%Y%m%d%H%M%S > trainer/dummy && DOCKER_BUILDKIT=1 docker build -f trainer/Dockerfile trainer/ -t voice-changer", "copy:frontend":"docker run -v `pwd`/docs:/docs --entrypoint /bin/bash -ti voice-changer -c \"cp -r /voice-changer-internal/frontend/dist/* /docs\"", + "copy:backend":"docker run -v `pwd`/demo:/demo --entrypoint /bin/bash -ti voice-changer -c \"cp -r /voice-changer-internal/voice-change-service/* /demo/\"", + "copy:requirements":"docker run -v `pwd`/demo:/demo --entrypoint /bin/bash -ti voice-changer -c \"pip3 freeze > /demo/requirements.txt\"", + "create:demo":"run-p copy:frontend copy:backend copy:requirements", "push:docker": "bash script/001_pushDocker.sh", "test": "echo \"Error: no test specified\" && exit 1" }, @@ -19,5 +22,8 @@ "bugs": { "url": "https://github.com/w-okada/voice-changer/issues" }, - "homepage": "https://github.com/w-okada/voice-changer#readme" + "homepage": "https://github.com/w-okada/voice-changer#readme", + "devDependencies": { + "npm-run-all": "^4.1.5" + } }