WIP: support so-vits-svc 40v2. can not store content vec in indexeddb.

This commit is contained in:
wataru 2023-03-14 05:18:37 +09:00
parent d5cc5c9e28
commit 76ddef5ee1
12 changed files with 143 additions and 37 deletions

File diff suppressed because one or more lines are too long

View File

@ -86,6 +86,26 @@ export const useModelSettingArea = (): ServerSettingState => {
})
}
const onClusterFileLoadClicked = async () => {
const file = await fileSelector("")
if (file.name.endsWith(".pth") == false) {
alert("モデルファイルの拡張子はpthである必要があります。")
return
}
appState.serverSetting.setFileUploadSetting({
...appState.serverSetting.fileUploadSetting,
clusterTorchModel: {
file: file
}
})
}
const onClusterFileClearClicked = () => {
appState.serverSetting.setFileUploadSetting({
...appState.serverSetting.fileUploadSetting,
clusterTorchModel: null
})
}
// const onOnnxFileLoadClicked = async () => {
// const file = await fileSelector("")
// if (file.name.endsWith(".onnx") == false) {
@ -116,6 +136,7 @@ export const useModelSettingArea = (): ServerSettingState => {
const configFilenameText = appState.serverSetting.fileUploadSetting.configFile?.filename || appState.serverSetting.fileUploadSetting.configFile?.file?.name || ""
const hubertModelFilenameText = appState.serverSetting.fileUploadSetting.hubertTorchModel?.filename || appState.serverSetting.fileUploadSetting.hubertTorchModel?.file?.name || ""
const clusterModelFilenameText = appState.serverSetting.fileUploadSetting.clusterTorchModel?.filename || appState.serverSetting.fileUploadSetting.clusterTorchModel?.file?.name || ""
// const onnxModelFilenameText = appState.serverSetting.fileUploadSetting.onnxModel?.filename || appState.serverSetting.fileUploadSetting.onnxModel?.file?.name || ""
const pyTorchFilenameText = appState.serverSetting.fileUploadSetting.pyTorchModel?.filename || appState.serverSetting.fileUploadSetting.pyTorchModel?.file?.name || ""
@ -159,6 +180,16 @@ export const useModelSettingArea = (): ServerSettingState => {
<div className="body-button left-margin-1" onClick={onHubertFileClearClicked}>clear</div>
</div>
</div>
<div className="body-row split-3-3-4 left-padding-1 guided">
<div className="body-item-title left-padding-2">cluster(.pth)</div>
<div className="body-item-text">
<div>{clusterModelFilenameText}</div>
</div>
<div className="body-button-container">
<div className="body-button" onClick={onClusterFileLoadClicked}>select</div>
<div className="body-button left-margin-1" onClick={onClusterFileClearClicked}>clear</div>
</div>
</div>
{/* <div className="body-row split-3-3-4 left-padding-1 guided">
<div className="body-item-title left-padding-2">Onnx(.onnx)</div>
<div className="body-item-text">

View File

@ -66,6 +66,26 @@ export const useSpeakerSetting = () => {
])
const clusterInferRatioRow = useMemo(() => {
return (
<div className="body-row split-3-3-4 left-padding-1 guided">
<div className="body-item-title left-padding-1 ">Cluster infer ratio</div>
<div>
<input type="range" className="body-item-input-slider" min="0" max="1" step="0.1" value={appState.serverSetting.serverSetting.clusterInferRatio} onChange={(e) => {
appState.serverSetting.updateServerSettings({ ...appState.serverSetting.serverSetting, clusterInferRatio: Number(e.target.value) })
}}></input>
<span className="body-item-input-slider-val">{appState.serverSetting.serverSetting.clusterInferRatio}</span>
</div>
<div className="body-button-container">
</div>
</div>
)
}, [
appState.serverSetting.serverSetting,
appState.serverSetting.updateServerSettings
])
const noiceScaleRow = useMemo(() => {
return (
<div className="body-row split-3-3-4 left-padding-1 guided">
@ -122,6 +142,7 @@ export const useSpeakerSetting = () => {
<div className="partition-content">
{dstIdRow}
{tranRow}
{clusterInferRatioRow}
{noiceScaleRow}
{silentThresholdRow}
</div>

View File

@ -109,7 +109,7 @@ export class ServerConfigurator {
})
}
loadModel = async (configFilename: string, pyTorchModelFilename: string | null, onnxModelFilename: string | null, hubertTorchModelFilename: string | null) => {
loadModel = async (configFilename: string, pyTorchModelFilename: string | null, onnxModelFilename: string | null, hubertTorchModelFilename: string | null, clusterTorchModelFilename: string | null) => {
const url = this.serverUrl + "/load_model"
const info = new Promise<ServerInfo>(async (resolve) => {
const formData = new FormData();
@ -117,6 +117,8 @@ export class ServerConfigurator {
formData.append("onnxModelFilename", onnxModelFilename || "-");
formData.append("configFilename", configFilename);
formData.append("hubertTorchModelFilename", hubertTorchModelFilename || "-");
formData.append("clusterTorchModelFilename", clusterTorchModelFilename || "-");
const request = new Request(url, {
method: 'POST',

View File

@ -243,8 +243,8 @@ export class VoiceChangerClient {
concatUploadedFile = (filename: string, chunkNum: number) => {
return this.configurator.concatUploadedFile(filename, chunkNum)
}
loadModel = (configFilename: string, pyTorchModelFilename: string | null, onnxModelFilename: string | null, hubertTorchModelFilename: string | null) => {
return this.configurator.loadModel(configFilename, pyTorchModelFilename, onnxModelFilename, hubertTorchModelFilename)
loadModel = (configFilename: string, pyTorchModelFilename: string | null, onnxModelFilename: string | null, hubertTorchModelFilename: string | null, clusterTorchModelFilename: string | null) => {
return this.configurator.loadModel(configFilename, pyTorchModelFilename, onnxModelFilename, hubertTorchModelFilename, clusterTorchModelFilename)
}
//## Worklet ##//

View File

@ -71,6 +71,7 @@ export const ServerSettingKey = {
"predictF0": "predictF0",
"silentThreshold": "silentThreshold",
"extraConvertSize": "extraConvertSize",
"clusterInferRatio": "clusterInferRatio",
"inputSampleRate": "inputSampleRate",
} as const
@ -98,6 +99,7 @@ export type VoiceChangerServerSetting = {
predictF0: number // so-vits-svc
silentThreshold: number // so-vits-svc
extraConvertSize: number// so-vits-svc
clusterInferRatio: number // so-vits-svc
inputSampleRate: InputSampleRate
}
@ -130,6 +132,7 @@ export const DefaultServerSetting_MMVCv15: ServerInfo = {
predictF0: 0,
silentThreshold: 0,
extraConvertSize: 0,
clusterInferRatio: 0,
inputSampleRate: 24000,
@ -161,6 +164,7 @@ export const DefaultServerSetting_MMVCv13: ServerInfo = {
predictF0: 0,
silentThreshold: 0,
extraConvertSize: 0,
clusterInferRatio: 0,
inputSampleRate: 24000,
@ -196,6 +200,7 @@ export const DefaultServerSetting_so_vits_svc_40v2: ServerInfo = {
predictF0: 0,
silentThreshold: 0.00001,
extraConvertSize: 1024 * 32,
clusterInferRatio: 0.1,
inputSampleRate: 24000,

View File

@ -15,13 +15,15 @@ export type FileUploadSetting = {
onnxModel: ModelData | null
configFile: ModelData | null
hubertTorchModel: ModelData | null
clusterTorchModel: ModelData | null
}
const InitialFileUploadSetting: FileUploadSetting = {
pyTorchModel: null,
configFile: null,
onnxModel: null,
hubertTorchModel: null
hubertTorchModel: null,
clusterTorchModel: null
}
export type UseServerSettingProps = {
@ -172,9 +174,12 @@ export const useServerSetting = (props: UseServerSettingProps): ServerSettingSta
fileUploadSetting.hubertTorchModel!.data = await fileUploadSetting.hubertTorchModel!.file!.arrayBuffer()
fileUploadSetting.hubertTorchModel!.filename = await fileUploadSetting.hubertTorchModel!.file!.name
}
if (props.clientType == "so_vits_svc_40v2c" && !fileUploadSetting.clusterTorchModel!.data) {
fileUploadSetting.clusterTorchModel!.data = await fileUploadSetting.clusterTorchModel!.file!.arrayBuffer()
fileUploadSetting.clusterTorchModel!.filename = await fileUploadSetting.clusterTorchModel!.file!.name
}
// ファイルをサーバにアップロード
const models = [fileUploadSetting.onnxModel, fileUploadSetting.pyTorchModel, fileUploadSetting.hubertTorchModel].filter(x => { return x != null }) as ModelData[]
const models = [fileUploadSetting.onnxModel, fileUploadSetting.pyTorchModel, fileUploadSetting.hubertTorchModel, fileUploadSetting.clusterTorchModel].filter(x => { return x != null }) as ModelData[]
for (let i = 0; i < models.length; i++) {
const progRate = 1 / models.length
const progOffset = 100 * i * progRate
@ -188,20 +193,27 @@ export const useServerSetting = (props: UseServerSettingProps): ServerSettingSta
console.log(progress, end)
})
const loadPromise = props.voiceChangerClient.loadModel(fileUploadSetting.configFile.filename!, fileUploadSetting.pyTorchModel?.filename || null, fileUploadSetting.onnxModel?.filename || null, fileUploadSetting.hubertTorchModel?.filename || null)
const loadPromise = props.voiceChangerClient.loadModel(fileUploadSetting.configFile.filename!, fileUploadSetting.pyTorchModel?.filename || null, fileUploadSetting.onnxModel?.filename || null, fileUploadSetting.hubertTorchModel?.filename || null, fileUploadSetting.clusterTorchModel?.filename || null)
// サーバでロード中にキャッシュにセーブ
try {
const saveData: FileUploadSetting = {
pyTorchModel: fileUploadSetting.pyTorchModel ? { data: fileUploadSetting.pyTorchModel.data, filename: fileUploadSetting.pyTorchModel.filename } : null,
onnxModel: fileUploadSetting.onnxModel ? { data: fileUploadSetting.onnxModel.data, filename: fileUploadSetting.onnxModel.filename } : null,
configFile: { data: fileUploadSetting.configFile.data, filename: fileUploadSetting.configFile.filename },
hubertTorchModel: fileUploadSetting.hubertTorchModel ? {
data: fileUploadSetting.hubertTorchModel.data, filename: fileUploadSetting.hubertTorchModel.filename
} : null,
clusterTorchModel: fileUploadSetting.clusterTorchModel ? {
data: fileUploadSetting.clusterTorchModel.data, filename: fileUploadSetting.clusterTorchModel.filename
} : null
}
setItem(INDEXEDDB_KEY_MODEL_DATA, saveData)
} catch (e) {
console.log("Excpetion:::::::::", e)
}
await loadPromise
setUploadProgress(0)
setIsUploading(false)

View File

@ -40,6 +40,7 @@ def setupArgParser():
parser.add_argument("--modelType", type=str,
default="MMVCv15", help="model type: MMVCv13, MMVCv15, so-vits-svc-40v2")
parser.add_argument("--hubert", type=str, help="path to hubert model")
parser.add_argument("--cluster", type=str, help="path to cluster model")
return parser
@ -81,6 +82,7 @@ CONFIG = args.c
MODEL = args.m if args.m != None else None
ONNX_MODEL = args.o if args.o != None else None
HUBERT_MODEL = args.hubert if args.hubert != None else None
CLUSTER_MODEL = args.cluster if args.cluster != None else None
MODEL_TYPE = os.environ.get('MODEL_TYPE', None)
if MODEL_TYPE == None:
MODEL_TYPE = args.modelType
@ -103,9 +105,9 @@ if args.colab == True:
voiceChangerManager = VoiceChangerManager.get_instance()
if CONFIG and (MODEL or ONNX_MODEL):
if MODEL_TYPE == "MMVCv15" or MODEL_TYPE == "MMVCv13":
voiceChangerManager.loadModel(CONFIG, MODEL, ONNX_MODEL, None)
voiceChangerManager.loadModel(CONFIG, MODEL, ONNX_MODEL, None, None)
else:
voiceChangerManager.loadModel(CONFIG, MODEL, ONNX_MODEL, HUBERT_MODEL)
voiceChangerManager.loadModel(CONFIG, MODEL, ONNX_MODEL, HUBERT_MODEL, CLUSTER_MODEL)
app_fastapi = MMVC_Rest.get_instance(voiceChangerManager)
app_socketio = MMVC_SocketIOApp.get_instance(app_fastapi, voiceChangerManager)

View File

@ -54,15 +54,18 @@ class MMVC_Rest_Fileuploader:
pyTorchModelFilename: str = Form(...),
onnxModelFilename: str = Form(...),
configFilename: str = Form(...),
hubertTorchModelFilename: str = Form(...)
hubertTorchModelFilename: str = Form(...),
clusterTorchModelFilename: str = Form(...)
):
print("Hubert:", hubertTorchModelFilename)
pyTorchModelFilePath = os.path.join(UPLOAD_DIR, pyTorchModelFilename) if pyTorchModelFilename != "-" else None
onnxModelFilePath = os.path.join(UPLOAD_DIR, onnxModelFilename) if onnxModelFilename != "-" else None
configFilePath = os.path.join(UPLOAD_DIR, configFilename)
hubertTorchModelFilePath = os.path.join(UPLOAD_DIR, hubertTorchModelFilename) if hubertTorchModelFilename != "-" else None
clusterTorchModelFilePath = os.path.join(UPLOAD_DIR, clusterTorchModelFilename) if clusterTorchModelFilename != "-" else None
info = self.voiceChangerManager.loadModel(configFilePath, pyTorchModelFilePath, onnxModelFilePath, hubertTorchModelFilePath)
info = self.voiceChangerManager.loadModel(configFilePath, pyTorchModelFilePath, onnxModelFilePath,
hubertTorchModelFilePath, clusterTorchModelFilePath)
json_compatible_item_data = jsonable_encoder(info)
return JSONResponse(content=json_compatible_item_data)
# return {"load": f"{configFilePath}, {pyTorchModelFilePath}, {onnxModelFilePath}"}

View File

@ -19,6 +19,7 @@ import onnxruntime
import pyworld as pw
from models import SynthesizerTrn
import cluster
import utils
from fairseq import checkpoint_utils
import librosa
@ -36,6 +37,7 @@ class SoVitsSvc40v2Settings():
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
clusterInferRatio: float = 0.1
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
@ -44,7 +46,7 @@ class SoVitsSvc40v2Settings():
# ↓mutableな物だけ列挙
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
floatData = ["noiceScale", "silentThreshold"]
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
strData = ["framework", "f0Detector"]
@ -58,20 +60,40 @@ class SoVitsSvc40v2:
self.gpu_num = torch.cuda.device_count()
self.prevVol = 0
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, hubertTorchModel: str = None):
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, hubertTorchModel: str = None, clusterTorchModel: str = None):
self.settings.configFile = config
self.hps = utils.get_hparams_from_file(config)
# hubert model
# vec_path = "hubert/checkpoint_best_legacy_500.pt"
try:
vec_path = hubertTorchModel
print("hubert 1 ", hubertTorchModel)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[vec_path],
suffix="",
)
print("hubert 2 ", hubertTorchModel)
model = models[0]
print("hubert 3 ", hubertTorchModel)
model.eval()
self.hubert_model = utils.get_hubert_model().cpu()
print("hubert 4 ", hubertTorchModel)
self.hubert_model = model.cpu()
print("hubert 5 ", hubertTorchModel)
except Exception as e:
print("EXCEPTION1", e)
# cluster
try:
if os.path.exists(clusterTorchModel):
print("load kmean11", clusterTorchModel)
self.cluster_model = cluster.get_cluster_model(clusterTorchModel)
print("load kmean12", clusterTorchModel)
else:
print("load kmean21", clusterTorchModel)
self.cluster_model = None
print("load kmean22", clusterTorchModel)
except Exception as e:
print("EXCEPTION2", e)
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
@ -157,6 +179,14 @@ class SoVitsSvc40v2:
wav16k = torch.from_numpy(wav16k)
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
if self.settings.clusterInferRatio != 0 and self.cluster_model != None:
# self.hsp.spk.tsukuyomi
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, "tsukuyomi").T
# cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, self.settings.dstId).T
cluster_c = torch.FloatTensor(cluster_c).cpu()
c = self.settings.clusterInferRatio * cluster_c + (1 - self.settings.clusterInferRatio) * c
c = c.unsqueeze(0)
return c, f0, uv

View File

@ -70,11 +70,11 @@ class VoiceChanger():
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, hubertTorchModel: str = None):
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, hubertTorchModel: str = None, clusterTorchModel: str = None):
if self.modelType == "MMVCv15" or self.modelType == "MMVCv13":
return self.voiceChanger.loadModel(config, pyTorch_model_file, onnx_model_file)
else: # so-vits-svc-40v2
return self.voiceChanger.loadModel(config, pyTorch_model_file, onnx_model_file, hubertTorchModel)
return self.voiceChanger.loadModel(config, pyTorch_model_file, onnx_model_file, hubertTorchModel, clusterTorchModel)
def get_info(self):
data = asdict(self.settings)

View File

@ -10,8 +10,8 @@ class VoiceChangerManager():
cls._instance.voiceChanger = VoiceChanger()
return cls._instance
def loadModel(self, config, model, onnx_model, hubertTorchModel):
info = self.voiceChanger.loadModel(config, model, onnx_model, hubertTorchModel)
def loadModel(self, config, model, onnx_model, hubertTorchModel, clusterTorchModel):
info = self.voiceChanger.loadModel(config, model, onnx_model, hubertTorchModel, clusterTorchModel)
info["status"] = "OK"
return info