WIP: RMVPE

This commit is contained in:
w-okada 2023-07-15 09:17:19 +09:00
parent 333e66786d
commit 7d7702bb79
13 changed files with 509 additions and 20 deletions

View File

@ -21,7 +21,7 @@
{
"name": "configArea",
"options": {
"detectors": ["dio", "harvest", "crepe", "crepe_full", "crepe_tiny"],
"detectors": ["dio", "harvest", "crepe", "crepe_full", "crepe_tiny", "rmvpe"],
"inputChunkNums": [8, 16, 24, 32, 40, 48, 64, 80, 96, 112, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 2048]
}
}

View File

@ -21,7 +21,7 @@
{
"name": "configArea",
"options": {
"detectors": ["dio", "harvest", "crepe", "crepe_full", "crepe_tiny"],
"detectors": ["dio", "harvest", "crepe", "crepe_full", "crepe_tiny", "rmvpe"],
"inputChunkNums": [8, 16, 24, 32, 40, 48, 64, 80, 96, 112, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 2048]
}
}

View File

@ -51,6 +51,7 @@ def setupArgParser():
parser.add_argument("--nsf_hifigan", type=str, help="path to nsf_hifigan model(pytorch)")
parser.add_argument("--crepe_onnx_full", type=str, help="path to crepe_onnx_full")
parser.add_argument("--crepe_onnx_tiny", type=str, help="path to crepe_onnx_tiny")
parser.add_argument("--rmvpe", type=str, help="path to rmvpe")
return parser
@ -90,6 +91,7 @@ voiceChangerParams = VoiceChangerParams(
nsf_hifigan=args.nsf_hifigan,
crepe_onnx_full=args.crepe_onnx_full,
crepe_onnx_tiny=args.crepe_onnx_tiny,
rmvpe=args.rmvpe,
sample_mode=args.sample_mode,
)

View File

@ -77,6 +77,7 @@ PitchExtractorType: TypeAlias = Literal[
"crepe",
"crepe_full",
"crepe_tiny",
"rmvpe",
]
ServerAudioDeviceType: TypeAlias = Literal[

View File

@ -14,6 +14,7 @@ def downloadWeight(voiceChangerParams: VoiceChangerParams):
nsf_hifigan = voiceChangerParams.nsf_hifigan
crepe_onnx_full = voiceChangerParams.crepe_onnx_full
crepe_onnx_tiny = voiceChangerParams.crepe_onnx_tiny
rmvpe = voiceChangerParams.rmvpe
# file exists check (currently only for rvc)
downloadParams = []
@ -86,6 +87,15 @@ def downloadWeight(voiceChangerParams: VoiceChangerParams):
}
)
if os.path.exists(content_vec_500_onnx) is False:
downloadParams.append(
{
"url": "https://huggingface.co/wok000/weights/resolve/main/rmvpe/rmvpe.pt",
"saveTo": rmvpe,
"position": 8,
}
)
with ThreadPoolExecutor() as pool:
pool.map(download, downloadParams)

View File

@ -55,8 +55,6 @@ class Pipeline(object):
self.resamplerIn = resamplerIn
self.resamplerOut = resamplerOut
# self.f0ex = self.load_f0_extractor(f0_model="harvest", f0_min=50, f0_max=1100)
print("VOLUME EXTRACTOR", self.volumeExtractor)
print("GENERATE INFERENCER", self.inferencer)
@ -67,18 +65,6 @@ class Pipeline(object):
self.device = device
self.isHalf = False
def load_f0_extractor(self, f0_model, f0_min=None, f0_max=None):
f0_extractor = F0_Extractor(
f0_extractor=f0_model,
sample_rate=44100,
hop_size=512,
f0_min=f0_min,
f0_max=f0_max,
block_size=512,
model_sampling_rate=44100
)
return f0_extractor
def getPipelineInfo(self):
volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo()
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}

View File

@ -1,11 +1,12 @@
import numpy as np
from const import PitchExtractorType
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
import onnxruntime
from voice_changer.RVC.pitchExtractor import onnxcrepe
import torch
from voice_changer.RVC.pitchExtractor import onnxcrepe
class CrepeOnnxPitchExtractor(PitchExtractor):

View File

@ -2,8 +2,7 @@ import torchcrepe
import torch
import numpy as np
from const import PitchExtractorType
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
class CrepePitchExtractor(PitchExtractor):

View File

@ -5,6 +5,7 @@ from voice_changer.DiffusionSVC.pitchExtractor.CrepePitchExtractor import CrepeP
from voice_changer.DiffusionSVC.pitchExtractor.DioPitchExtractor import DioPitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.HarvestPitchExtractor import HarvestPitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.RMVPEPitchExtractor import RMVPEPitchExtractor
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
@ -37,6 +38,8 @@ class PitchExtractorManager(Protocol):
return CrepeOnnxPitchExtractor(pitchExtractorType, cls.params.crepe_onnx_tiny, gpu)
elif pitchExtractorType == "crepe_full":
return CrepeOnnxPitchExtractor(pitchExtractorType, cls.params.crepe_onnx_full, gpu)
elif pitchExtractorType == "rmvpe":
return RMVPEPitchExtractor(cls.params.rmvpe, gpu)
else:
# return hubert as default
raise RuntimeError(

View File

@ -0,0 +1,61 @@
import torch
import numpy as np
from const import PitchExtractorType
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.rmvpe.rmvpe import RMVPE
class RMVPEPitchExtractor(PitchExtractor):
def __init__(self, file: str, gpu: int):
super().__init__()
self.pitchExtractorType: PitchExtractorType = "rmvpe"
self.f0_min = 50
self.f0_max = 1100
self.sapmle_rate = 16000
self.uv_interp = True
if torch.cuda.is_available() and gpu >= 0:
self.device = torch.device("cuda:" + str(torch.cuda.current_device()))
else:
self.device = torch.device("cpu")
self.rmvpe = RMVPE(model_path=file, is_half=False, device=self.device)
def extract(self, audio: torch.Tensor, pitch, f0_up_key, window, silence_front=0):
start_frame = int(silence_front * self.sapmle_rate / window)
real_silence_front = start_frame * window / self.sapmle_rate
audio = audio[int(np.round(real_silence_front * self.sapmle_rate)):]
print("[RMVPE AUDI]", audio.device)
print("[RMVPE RMVPE]", self.rmvpe.device)
f0 = self.rmvpe.infer_from_audio_t(audio, thred=0.03)
# f0, pd = torchcrepe.predict(
# audio.unsqueeze(0),
# self.sapmle_rate,
# hop_length=window,
# fmin=self.f0_min,
# fmax=self.f0_max,
# # model="tiny",
# model="full",
# batch_size=256,
# decoder=torchcrepe.decode.weighted_argmax,
# device=self.device,
# return_periodicity=True,
# )
# f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ
# pd = torchcrepe.filter.median(pd, 3)
# f0[pd < 0.1] = 0
# f0 = f0.squeeze()
pitch[-f0.shape[0]:] = f0[:pitch.shape[0]]
f0 = pitch
if self.uv_interp:
uv = f0 == 0
if len(f0[~uv]) > 0:
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
f0[f0 < self.f0_min] = self.f0_min
f0 = f0 * 2 ** (float(f0_up_key) / 12)
return f0

View File

@ -0,0 +1,4 @@
modules in this folder from https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI at 86ed98aacaa8b2037aad795abd11cdca122cf39f

View File

@ -0,0 +1,420 @@
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
from librosa.filters import mel
class BiGRU(nn.Module):
def __init__(self, input_features, hidden_features, num_layers):
super(BiGRU, self).__init__()
self.gru = nn.GRU(
input_features,
hidden_features,
num_layers=num_layers,
batch_first=True,
bidirectional=True,
)
def forward(self, x):
return self.gru(x)[0]
class ConvBlockRes(nn.Module):
def __init__(self, in_channels, out_channels, momentum=0.01):
super(ConvBlockRes, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
self.is_shortcut = True
else:
self.is_shortcut = False
def forward(self, x):
if self.is_shortcut:
return self.conv(x) + self.shortcut(x)
else:
return self.conv(x) + x
class Encoder(nn.Module):
def __init__(
self,
in_channels,
in_size,
n_encoders,
kernel_size,
n_blocks,
out_channels=16,
momentum=0.01,
):
super(Encoder, self).__init__()
self.n_encoders = n_encoders
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
self.layers = nn.ModuleList()
self.latent_channels = []
for i in range(self.n_encoders):
self.layers.append(
ResEncoderBlock(
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
)
)
self.latent_channels.append([out_channels, in_size])
in_channels = out_channels
out_channels *= 2
in_size //= 2
self.out_size = in_size
self.out_channel = out_channels
def forward(self, x):
concat_tensors = []
x = self.bn(x)
for i in range(self.n_encoders):
_, x = self.layers[i](x)
concat_tensors.append(_)
return x, concat_tensors
class ResEncoderBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
):
super(ResEncoderBlock, self).__init__()
self.n_blocks = n_blocks
self.conv = nn.ModuleList()
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
self.kernel_size = kernel_size
if self.kernel_size is not None:
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
def forward(self, x):
for i in range(self.n_blocks):
x = self.conv[i](x)
if self.kernel_size is not None:
return x, self.pool(x)
else:
return x
class Intermediate(nn.Module): #
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
super(Intermediate, self).__init__()
self.n_inters = n_inters
self.layers = nn.ModuleList()
self.layers.append(
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
)
for i in range(self.n_inters - 1):
self.layers.append(
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
)
def forward(self, x):
for i in range(self.n_inters):
x = self.layers[i](x)
return x
class ResDecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
super(ResDecoderBlock, self).__init__()
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
self.n_blocks = n_blocks
self.conv1 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=stride,
padding=(1, 1),
output_padding=out_padding,
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
self.conv2 = nn.ModuleList()
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
def forward(self, x, concat_tensor):
x = self.conv1(x)
x = torch.cat((x, concat_tensor), dim=1)
for i in range(self.n_blocks):
x = self.conv2[i](x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
super(Decoder, self).__init__()
self.layers = nn.ModuleList()
self.n_decoders = n_decoders
for i in range(self.n_decoders):
out_channels = in_channels // 2
self.layers.append(
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
)
in_channels = out_channels
def forward(self, x, concat_tensors):
for i in range(self.n_decoders):
x = self.layers[i](x, concat_tensors[-1 - i])
return x
class DeepUnet(nn.Module):
def __init__(
self,
kernel_size,
n_blocks,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(DeepUnet, self).__init__()
self.encoder = Encoder(
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
)
self.intermediate = Intermediate(
self.encoder.out_channel // 2,
self.encoder.out_channel,
inter_layers,
n_blocks,
)
self.decoder = Decoder(
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
)
def forward(self, x):
x, concat_tensors = self.encoder(x)
x = self.intermediate(x)
x = self.decoder(x, concat_tensors)
return x
class E2E(nn.Module):
def __init__(
self,
n_blocks,
n_gru,
kernel_size,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(E2E, self).__init__()
self.unet = DeepUnet(
kernel_size,
n_blocks,
en_de_layers,
inter_layers,
in_channels,
en_out_channels,
)
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
if n_gru:
print("N_GRUE")
self.fc = nn.Sequential(
BiGRU(3 * 128, 256, n_gru),
nn.Linear(512, 360),
nn.Dropout(0.25),
nn.Sigmoid(),
)
# else:
# self.fc = nn.Sequential(
# nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
# )
def forward(self, mel):
mel = mel.transpose(-1, -2).unsqueeze(1)
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
x = self.fc(x)
return x
class MelSpectrogram(torch.nn.Module):
def __init__(
self,
is_half,
n_mel_channels,
sampling_rate,
win_length,
hop_length,
n_fft=None,
mel_fmin=0,
mel_fmax=None,
clamp=1e-5,
):
super().__init__()
n_fft = win_length if n_fft is None else n_fft
self.hann_window = {}
mel_basis = mel(
sr=sampling_rate,
n_fft=n_fft,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
htk=True,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.n_fft = win_length if n_fft is None else n_fft
self.hop_length = hop_length
self.win_length = win_length
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.clamp = clamp
self.is_half = is_half
def forward(self, audio, keyshift=0, speed=1, center=True):
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(self.n_fft * factor))
win_length_new = int(np.round(self.win_length * factor))
hop_length_new = int(np.round(self.hop_length * speed))
keyshift_key = str(keyshift) + "_" + str(audio.device)
if keyshift_key not in self.hann_window:
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
audio.device
)
fft = torch.stft(
audio,
n_fft=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window=self.hann_window[keyshift_key],
center=center,
return_complex=True,
)
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
if keyshift != 0:
size = self.n_fft // 2 + 1
resize = magnitude.size(1)
if resize < size:
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
mel_output = torch.matmul(self.mel_basis, magnitude)
if self.is_half is True:
mel_output = mel_output.half()
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
return log_mel_spec
class RMVPE:
def __init__(self, model_path, is_half, device=None):
self.resample_kernel = {}
model = E2E(4, 1, (2, 2))
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
if is_half is True:
model = model.half()
self.model = model
self.resample_kernel = {}
self.is_half = is_half
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.mel_extractor = MelSpectrogram(
is_half, 128, 16000, 1024, 160, None, 30, 8000
).to(device)
self.model = self.model.to(device)
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
def mel2hidden(self, mel):
with torch.no_grad():
n_frames = mel.shape[-1]
mel = F.pad(
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
)
hidden = self.model(mel)
return hidden[:, :n_frames]
def decode(self, hidden, thred=0.03):
cents_pred = self.to_local_average_cents(hidden, thred=thred)
f0 = 10 * (2 ** (cents_pred / 1200))
f0[f0 == 10] = 0
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
return f0
def infer_from_audio(self, audio, thred=0.03):
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
# torch.cuda.synchronize()
# t0=ttime()
mel = self.mel_extractor(audio, center=True)
# torch.cuda.synchronize()
# t1=ttime()
hidden = self.mel2hidden(mel)
# torch.cuda.synchronize()
# t2=ttime()
hidden = hidden.squeeze(0).cpu().numpy()
if self.is_half is True:
hidden = hidden.astype("float32")
f0 = self.decode(hidden, thred=thred)
# torch.cuda.synchronize()
# t3=ttime()
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
return f0
def infer_from_audio_t(self, audio, thred=0.03):
# audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
mel = self.mel_extractor(audio.unsqueeze(0), center=True)
hidden = self.mel2hidden(mel)
hidden = hidden.squeeze(0).cpu().numpy()
if self.is_half is True:
hidden = hidden.astype("float32")
f0 = self.decode(hidden, thred=thred)
return f0
def to_local_average_cents(self, salience, thred=0.05):
# t0 = ttime()
center = np.argmax(salience, axis=1) # 帧长#index
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
# t1 = ttime()
center += 4
todo_salience = []
todo_cents_mapping = []
starts = center - 4
ends = center + 5
for idx in range(salience.shape[0]):
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) # NOQA
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) # NOQA
# t2 = ttime()
todo_salience = np.array(todo_salience) # 帧长9
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长9
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
weight_sum = np.sum(todo_salience, 1) # 帧长
devided = product_sum / weight_sum # 帧长
# t3 = ttime()
maxx = np.max(salience, axis=1) # 帧长
devided[maxx <= thred] = 0
# t4 = ttime()
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
return devided

View File

@ -14,3 +14,5 @@ class VoiceChangerParams:
sample_mode: str
crepe_onnx_full: str
crepe_onnx_tiny: str
rmvpe: str