mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
WIP: refactoring
This commit is contained in:
parent
4fc57153e7
commit
83083a68ac
@ -15,6 +15,8 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from fairseq import checkpoint_utils
|
from fairseq import checkpoint_utils
|
||||||
|
import traceback
|
||||||
|
import faiss
|
||||||
|
|
||||||
from const import TMP_DIR # type:ignore
|
from const import TMP_DIR # type:ignore
|
||||||
|
|
||||||
@ -169,12 +171,15 @@ class RVC:
|
|||||||
self.settings.modelSlots[slot].deprecated = tmp_onnx_session.getDeprecated()
|
self.settings.modelSlots[slot].deprecated = tmp_onnx_session.getDeprecated()
|
||||||
|
|
||||||
def prepareModel(self, slot: int):
|
def prepareModel(self, slot: int):
|
||||||
|
if slot < 0:
|
||||||
|
return self.get_info()
|
||||||
print("[Voice Changer] Prepare Model of slot:", slot)
|
print("[Voice Changer] Prepare Model of slot:", slot)
|
||||||
onnxModelFile = self.settings.modelSlots[slot].onnxModelFile
|
onnxModelFile = self.settings.modelSlots[slot].onnxModelFile
|
||||||
isONNX = (
|
isONNX = (
|
||||||
True if self.settings.modelSlots[slot].onnxModelFile is not None else False
|
True if self.settings.modelSlots[slot].onnxModelFile is not None else False
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# モデルのロード
|
||||||
if isONNX:
|
if isONNX:
|
||||||
print("[Voice Changer] Loading ONNX Model...")
|
print("[Voice Changer] Loading ONNX Model...")
|
||||||
self.next_onnx_session = ModelWrapper(onnxModelFile)
|
self.next_onnx_session = ModelWrapper(onnxModelFile)
|
||||||
@ -214,8 +219,36 @@ class RVC:
|
|||||||
self.next_net_g = net_g
|
self.next_net_g = net_g
|
||||||
self.next_onnx_session = None
|
self.next_onnx_session = None
|
||||||
|
|
||||||
|
# Indexのロード
|
||||||
|
print("[Voice Changer] Loading index...")
|
||||||
self.next_feature_file = self.settings.modelSlots[slot].featureFile
|
self.next_feature_file = self.settings.modelSlots[slot].featureFile
|
||||||
self.next_index_file = self.settings.modelSlots[slot].indexFile
|
self.next_index_file = self.settings.modelSlots[slot].indexFile
|
||||||
|
|
||||||
|
if (
|
||||||
|
self.settings.modelSlots[slot].featureFile is not None
|
||||||
|
and self.settings.modelSlots[slot].indexFile is not None
|
||||||
|
):
|
||||||
|
if (
|
||||||
|
os.path.exists(self.settings.modelSlots[slot].featureFile) is True
|
||||||
|
and os.path.exists(self.settings.modelSlots[slot].indexFile) is True
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
self.next_index = faiss.read_index(
|
||||||
|
self.settings.modelSlots[slot].indexFile
|
||||||
|
)
|
||||||
|
self.next_feature = np.load(
|
||||||
|
self.settings.modelSlots[slot].featureFile
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print("[Voice Changer] load index failed. Use no index.")
|
||||||
|
traceback.print_exc()
|
||||||
|
self.next_index = self.next_feature = None
|
||||||
|
else:
|
||||||
|
print("[Voice Changer] Index file is not found. Use no index.")
|
||||||
|
self.next_index = self.next_feature = None
|
||||||
|
else:
|
||||||
|
self.next_index = self.next_feature = None
|
||||||
|
|
||||||
self.next_trans = self.settings.modelSlots[slot].defaultTrans
|
self.next_trans = self.settings.modelSlots[slot].defaultTrans
|
||||||
self.next_samplingRate = self.settings.modelSlots[slot].samplingRate
|
self.next_samplingRate = self.settings.modelSlots[slot].samplingRate
|
||||||
self.next_framework = (
|
self.next_framework = (
|
||||||
@ -232,6 +265,8 @@ class RVC:
|
|||||||
self.onnx_session = self.next_onnx_session
|
self.onnx_session = self.next_onnx_session
|
||||||
self.feature_file = self.next_feature_file
|
self.feature_file = self.next_feature_file
|
||||||
self.index_file = self.next_index_file
|
self.index_file = self.next_index_file
|
||||||
|
self.feature = self.next_feature
|
||||||
|
self.index = self.next_index
|
||||||
self.settings.tran = self.next_trans
|
self.settings.tran = self.next_trans
|
||||||
self.settings.framework = self.next_framework
|
self.settings.framework = self.next_framework
|
||||||
self.settings.modelSamplingRate = self.next_samplingRate
|
self.settings.modelSamplingRate = self.next_samplingRate
|
||||||
@ -436,14 +471,10 @@ class RVC:
|
|||||||
repeat *= self.settings.rvcQuality # 0 or 3
|
repeat *= self.settings.rvcQuality # 0 or 3
|
||||||
vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat)
|
vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat)
|
||||||
sid = 0
|
sid = 0
|
||||||
times = [0, 0, 0]
|
|
||||||
f0_up_key = self.settings.tran
|
f0_up_key = self.settings.tran
|
||||||
f0_method = self.settings.f0Detector
|
f0_method = self.settings.f0Detector
|
||||||
file_index = self.index_file if self.index_file is not None else ""
|
|
||||||
file_big_npy = self.feature_file if self.feature_file is not None else ""
|
|
||||||
index_rate = self.settings.indexRatio
|
index_rate = self.settings.indexRatio
|
||||||
if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
|
if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
|
||||||
f0_file = None
|
|
||||||
|
|
||||||
embChannels = self.settings.modelSlots[self.currentSlot].embChannels
|
embChannels = self.settings.modelSlots[self.currentSlot].embChannels
|
||||||
audio_out = vc.pipeline(
|
audio_out = vc.pipeline(
|
||||||
@ -451,14 +482,12 @@ class RVC:
|
|||||||
self.net_g,
|
self.net_g,
|
||||||
sid,
|
sid,
|
||||||
audio,
|
audio,
|
||||||
times,
|
|
||||||
f0_up_key,
|
f0_up_key,
|
||||||
f0_method,
|
f0_method,
|
||||||
file_index,
|
self.index,
|
||||||
file_big_npy,
|
self.feature,
|
||||||
index_rate,
|
index_rate,
|
||||||
if_f0,
|
if_f0,
|
||||||
f0_file=f0_file,
|
|
||||||
silence_front=self.settings.extraConvertSize
|
silence_front=self.settings.extraConvertSize
|
||||||
/ self.settings.modelSamplingRate,
|
/ self.settings.modelSamplingRate,
|
||||||
embChannels=embChannels,
|
embChannels=embChannels,
|
||||||
|
@ -1,16 +1,10 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import parselmouth
|
import parselmouth
|
||||||
import torch
|
import torch
|
||||||
import pdb
|
|
||||||
from time import time as ttime
|
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from config import x_pad, x_query, x_center, x_max
|
from config import x_pad, x_query, x_center, x_max
|
||||||
import scipy.signal as signal
|
import scipy.signal as signal
|
||||||
import pyworld
|
import pyworld
|
||||||
import os
|
|
||||||
import traceback
|
|
||||||
import faiss
|
|
||||||
# from .const import RVC_MODEL_TYPE_NORMAL, RVC_MODEL_TYPE_PITCHLESS, RVC_MODEL_TYPE_WEBUI_256_NORMAL, RVC_MODEL_TYPE_WEBUI_768_NORMAL, RVC_MODEL_TYPE_WEBUI_256_PITCHLESS, RVC_MODEL_TYPE_WEBUI_768_PITCHLESS
|
|
||||||
from .const import RVC_MODEL_TYPE_RVC, RVC_MODEL_TYPE_WEBUI
|
from .const import RVC_MODEL_TYPE_RVC, RVC_MODEL_TYPE_WEBUI
|
||||||
|
|
||||||
|
|
||||||
@ -20,7 +14,6 @@ class VC(object):
|
|||||||
self.window = 160 # 每帧点数
|
self.window = 160 # 每帧点数
|
||||||
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
||||||
self.t_pad_tgt = tgt_sr * x_pad
|
self.t_pad_tgt = tgt_sr * x_pad
|
||||||
self.t_pad2 = self.t_pad * 2
|
|
||||||
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
||||||
self.t_center = self.sr * x_center # 查询切点位置
|
self.t_center = self.sr * x_center # 查询切点位置
|
||||||
self.t_max = self.sr * x_max # 免查询时长阈值
|
self.t_max = self.sr * x_max # 免查询时长阈值
|
||||||
@ -28,7 +21,6 @@ class VC(object):
|
|||||||
self.is_half = is_half
|
self.is_half = is_half
|
||||||
|
|
||||||
def get_f0(self, audio, p_len, f0_up_key, f0_method, inp_f0=None, silence_front=0):
|
def get_f0(self, audio, p_len, f0_up_key, f0_method, inp_f0=None, silence_front=0):
|
||||||
|
|
||||||
n_frames = int(len(audio) // self.window) + 1
|
n_frames = int(len(audio) // self.window) + 1
|
||||||
start_frame = int(silence_front * self.sr / self.window)
|
start_frame = int(silence_front * self.sr / self.window)
|
||||||
real_silence_front = start_frame * self.window / self.sr
|
real_silence_front = start_frame * self.window / self.sr
|
||||||
@ -40,14 +32,23 @@ class VC(object):
|
|||||||
f0_max = 1100
|
f0_max = 1100
|
||||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
if (f0_method == "pm"):
|
if f0_method == "pm":
|
||||||
f0 = parselmouth.Sound(audio, self.sr).to_pitch_ac(
|
f0 = (
|
||||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
parselmouth.Sound(audio, self.sr)
|
||||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=f0_min,
|
||||||
|
pitch_ceiling=f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
pad_size = (p_len - len(f0) + 1) // 2
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
if (pad_size > 0 or p_len - len(f0) - pad_size > 0):
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
|
f0 = np.pad(
|
||||||
elif (f0_method == "harvest"):
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
|
)
|
||||||
|
elif f0_method == "harvest":
|
||||||
f0, t = pyworld.harvest(
|
f0, t = pyworld.harvest(
|
||||||
audio.astype(np.double),
|
audio.astype(np.double),
|
||||||
fs=self.sr,
|
fs=self.sr,
|
||||||
@ -57,36 +58,65 @@ class VC(object):
|
|||||||
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
||||||
f0 = signal.medfilt(f0, 3)
|
f0 = signal.medfilt(f0, 3)
|
||||||
|
|
||||||
f0 = np.pad(f0.astype('float'), (start_frame, n_frames - len(f0) - start_frame))
|
f0 = np.pad(
|
||||||
|
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
print("[Voice Changer] invalid f0 detector, use pm.", f0_method)
|
print("[Voice Changer] invalid f0 detector, use pm.", f0_method)
|
||||||
f0 = parselmouth.Sound(audio, self.sr).to_pitch_ac(
|
f0 = (
|
||||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
parselmouth.Sound(audio, self.sr)
|
||||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=f0_min,
|
||||||
|
pitch_ceiling=f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
pad_size = (p_len - len(f0) + 1) // 2
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
if (pad_size > 0 or p_len - len(f0) - pad_size > 0):
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
|
f0 = np.pad(
|
||||||
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
|
)
|
||||||
|
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
tf0 = self.sr // self.window # 每秒f0点数
|
tf0 = self.sr // self.window # 每秒f0点数
|
||||||
if (inp_f0 is not None):
|
if inp_f0 is not None:
|
||||||
delta_t = np.round((inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1).astype("int16")
|
delta_t = np.round(
|
||||||
replace_f0 = np.interp(list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1])
|
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||||
|
).astype("int16")
|
||||||
|
replace_f0 = np.interp(
|
||||||
|
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||||
|
)
|
||||||
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||||
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||||
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
f0bak = f0.copy()
|
f0bak = f0.copy()
|
||||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
f0_mel[f0_mel <= 1] = 1
|
f0_mel[f0_mel <= 1] = 1
|
||||||
f0_mel[f0_mel > 255] = 255
|
f0_mel[f0_mel > 255] = 255
|
||||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||||
return f0_coarse, f0bak # 1-0
|
return f0_coarse, f0bak # 1-0
|
||||||
|
|
||||||
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, embChannels=256): # ,file_index,file_big_npy
|
def vc(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
net_g,
|
||||||
|
sid,
|
||||||
|
audio0,
|
||||||
|
pitch,
|
||||||
|
pitchf,
|
||||||
|
index,
|
||||||
|
big_npy,
|
||||||
|
index_rate,
|
||||||
|
embChannels=256,
|
||||||
|
): # ,file_index,file_big_npy
|
||||||
feats = torch.from_numpy(audio0)
|
feats = torch.from_numpy(audio0)
|
||||||
if (self.is_half == True):
|
if self.is_half == True:
|
||||||
feats = feats.half()
|
feats = feats.half()
|
||||||
else:
|
else:
|
||||||
feats = feats.float()
|
feats = feats.float()
|
||||||
@ -107,7 +137,6 @@ class VC(object):
|
|||||||
"padding_mask": padding_mask,
|
"padding_mask": padding_mask,
|
||||||
}
|
}
|
||||||
|
|
||||||
t0 = ttime()
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model.extract_features(**inputs)
|
logits = model.extract_features(**inputs)
|
||||||
if embChannels == 256:
|
if embChannels == 256:
|
||||||
@ -115,82 +144,121 @@ class VC(object):
|
|||||||
else:
|
else:
|
||||||
feats = logits[0]
|
feats = logits[0]
|
||||||
|
|
||||||
if (isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0):
|
if (
|
||||||
|
isinstance(index, type(None)) is False
|
||||||
|
and isinstance(big_npy, type(None)) is False
|
||||||
|
and index_rate != 0
|
||||||
|
):
|
||||||
npy = feats[0].cpu().numpy()
|
npy = feats[0].cpu().numpy()
|
||||||
if (self.is_half == True):
|
if self.is_half is True:
|
||||||
npy = npy.astype("float32")
|
npy = npy.astype("float32")
|
||||||
D, I = index.search(npy, 1)
|
D, I = index.search(npy, 1)
|
||||||
npy = big_npy[I.squeeze()]
|
npy = big_npy[I.squeeze()]
|
||||||
if (self.is_half == True):
|
if self.is_half is True:
|
||||||
npy = npy.astype("float16")
|
npy = npy.astype("float16")
|
||||||
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats
|
|
||||||
|
feats = (
|
||||||
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
||||||
|
+ (1 - index_rate) * feats
|
||||||
|
)
|
||||||
|
|
||||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||||
|
|
||||||
t1 = ttime()
|
|
||||||
p_len = audio0.shape[0] // self.window
|
p_len = audio0.shape[0] // self.window
|
||||||
if (feats.shape[1] < p_len):
|
if feats.shape[1] < p_len:
|
||||||
p_len = feats.shape[1]
|
p_len = feats.shape[1]
|
||||||
if (pitch != None and pitchf != None):
|
if pitch is not None and pitchf is not None:
|
||||||
pitch = pitch[:, :p_len]
|
pitch = pitch[:, :p_len]
|
||||||
pitchf = pitchf[:, :p_len]
|
pitchf = pitchf[:, :p_len]
|
||||||
p_len = torch.tensor([p_len], device=self.device).long()
|
p_len = torch.tensor([p_len], device=self.device).long()
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if pitch != None:
|
if pitch is not None:
|
||||||
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
audio1 = (
|
||||||
|
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
if hasattr(net_g, "infer_pitchless"):
|
if hasattr(net_g, "infer_pitchless"):
|
||||||
audio1 = (net_g.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
audio1 = (
|
||||||
|
(net_g.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
audio1 = (
|
||||||
|
(net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
# audio1 = (net_g.infer(feats, p_len, None, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
|
|
||||||
del feats, p_len, padding_mask
|
del feats, p_len, padding_mask
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
t2 = ttime()
|
|
||||||
times[0] += (t1 - t0)
|
|
||||||
times[2] += (t2 - t1)
|
|
||||||
return audio1
|
return audio1
|
||||||
|
|
||||||
def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None, silence_front=0, embChannels=256):
|
def pipeline(
|
||||||
if (file_big_npy != "" and file_index != "" and os.path.exists(file_big_npy) == True and os.path.exists(file_index) == True and index_rate != 0):
|
self,
|
||||||
try:
|
embedder,
|
||||||
index = faiss.read_index(file_index)
|
model,
|
||||||
big_npy = np.load(file_big_npy)
|
sid,
|
||||||
except:
|
audio,
|
||||||
traceback.print_exc()
|
f0_up_key,
|
||||||
index = big_npy = None
|
f0_method,
|
||||||
else:
|
index,
|
||||||
index = big_npy = None
|
big_npy,
|
||||||
|
index_rate,
|
||||||
audio_opt = []
|
if_f0,
|
||||||
t = None
|
silence_front=0,
|
||||||
t1 = ttime()
|
embChannels=256,
|
||||||
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
|
):
|
||||||
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
||||||
p_len = audio_pad.shape[0] // self.window
|
p_len = audio_pad.shape[0] // self.window
|
||||||
inp_f0 = None
|
inp_f0 = None
|
||||||
|
|
||||||
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||||||
|
|
||||||
|
# ピッチ検出
|
||||||
pitch, pitchf = None, None
|
pitch, pitchf = None, None
|
||||||
if (if_f0 == 1):
|
if if_f0 == 1:
|
||||||
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0, silence_front=silence_front)
|
pitch, pitchf = self.get_f0(
|
||||||
|
audio_pad,
|
||||||
|
p_len,
|
||||||
|
f0_up_key,
|
||||||
|
f0_method,
|
||||||
|
inp_f0,
|
||||||
|
silence_front=silence_front,
|
||||||
|
)
|
||||||
pitch = pitch[:p_len]
|
pitch = pitch[:p_len]
|
||||||
pitchf = pitchf[:p_len]
|
pitchf = pitchf[:p_len]
|
||||||
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
||||||
pitchf = torch.tensor(pitchf, device=self.device, dtype=torch.float).unsqueeze(0)
|
pitchf = torch.tensor(
|
||||||
|
pitchf, device=self.device, dtype=torch.float
|
||||||
|
).unsqueeze(0)
|
||||||
|
|
||||||
t2 = ttime()
|
output = self.vc(
|
||||||
times[1] += (t2 - t1)
|
embedder,
|
||||||
if self.t_pad_tgt == 0:
|
model,
|
||||||
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
|
sid,
|
||||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, embChannels))
|
audio_pad,
|
||||||
else:
|
pitch,
|
||||||
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch,
|
pitchf,
|
||||||
pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate, embChannels)[self.t_pad_tgt:-self.t_pad_tgt])
|
index,
|
||||||
|
big_npy,
|
||||||
|
index_rate,
|
||||||
|
embChannels,
|
||||||
|
)
|
||||||
|
if self.t_pad_tgt != 0:
|
||||||
|
offset = self.t_pad_tgt
|
||||||
|
end = -1 * self.t_pad_tgt
|
||||||
|
output = output[offset:end]
|
||||||
|
|
||||||
audio_opt = np.concatenate(audio_opt)
|
|
||||||
del pitch, pitchf, sid
|
del pitch, pitchf, sid
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
return audio_opt
|
return output
|
||||||
|
315
server/voice_changer/RVC/custom_vc_infer_pipeline_backup.py
Normal file
315
server/voice_changer/RVC/custom_vc_infer_pipeline_backup.py
Normal file
@ -0,0 +1,315 @@
|
|||||||
|
import numpy as np
|
||||||
|
import parselmouth
|
||||||
|
import torch
|
||||||
|
import pdb
|
||||||
|
from time import time as ttime
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from config import x_pad, x_query, x_center, x_max
|
||||||
|
import scipy.signal as signal
|
||||||
|
import pyworld
|
||||||
|
import os
|
||||||
|
import traceback
|
||||||
|
import faiss
|
||||||
|
from .const import RVC_MODEL_TYPE_RVC, RVC_MODEL_TYPE_WEBUI
|
||||||
|
|
||||||
|
|
||||||
|
class VC(object):
|
||||||
|
def __init__(self, tgt_sr, device, is_half, x_pad):
|
||||||
|
self.sr = 16000 # hubert输入采样率
|
||||||
|
self.window = 160 # 每帧点数
|
||||||
|
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
||||||
|
self.t_pad_tgt = tgt_sr * x_pad
|
||||||
|
self.t_pad2 = self.t_pad * 2
|
||||||
|
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
||||||
|
self.t_center = self.sr * x_center # 查询切点位置
|
||||||
|
self.t_max = self.sr * x_max # 免查询时长阈值
|
||||||
|
self.device = device
|
||||||
|
self.is_half = is_half
|
||||||
|
|
||||||
|
def get_f0(self, audio, p_len, f0_up_key, f0_method, inp_f0=None, silence_front=0):
|
||||||
|
n_frames = int(len(audio) // self.window) + 1
|
||||||
|
start_frame = int(silence_front * self.sr / self.window)
|
||||||
|
real_silence_front = start_frame * self.window / self.sr
|
||||||
|
|
||||||
|
audio = audio[int(np.round(real_silence_front * self.sr)) :]
|
||||||
|
|
||||||
|
time_step = self.window / self.sr * 1000
|
||||||
|
f0_min = 50
|
||||||
|
f0_max = 1100
|
||||||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
|
if f0_method == "pm":
|
||||||
|
f0 = (
|
||||||
|
parselmouth.Sound(audio, self.sr)
|
||||||
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=f0_min,
|
||||||
|
pitch_ceiling=f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
|
f0 = np.pad(
|
||||||
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
|
)
|
||||||
|
elif f0_method == "harvest":
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
|
audio.astype(np.double),
|
||||||
|
fs=self.sr,
|
||||||
|
f0_ceil=f0_max,
|
||||||
|
frame_period=10,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, self.sr)
|
||||||
|
f0 = signal.medfilt(f0, 3)
|
||||||
|
|
||||||
|
f0 = np.pad(
|
||||||
|
f0.astype("float"), (start_frame, n_frames - len(f0) - start_frame)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("[Voice Changer] invalid f0 detector, use pm.", f0_method)
|
||||||
|
f0 = (
|
||||||
|
parselmouth.Sound(audio, self.sr)
|
||||||
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=f0_min,
|
||||||
|
pitch_ceiling=f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
|
f0 = np.pad(
|
||||||
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
|
)
|
||||||
|
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
|
tf0 = self.sr // self.window # 每秒f0点数
|
||||||
|
if inp_f0 is not None:
|
||||||
|
delta_t = np.round(
|
||||||
|
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||||
|
).astype("int16")
|
||||||
|
replace_f0 = np.interp(
|
||||||
|
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||||
|
)
|
||||||
|
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||||
|
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||||
|
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
|
f0bak = f0.copy()
|
||||||
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
|
f0_mel[f0_mel <= 1] = 1
|
||||||
|
f0_mel[f0_mel > 255] = 255
|
||||||
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||||
|
return f0_coarse, f0bak # 1-0
|
||||||
|
|
||||||
|
def vc(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
net_g,
|
||||||
|
sid,
|
||||||
|
audio0,
|
||||||
|
pitch,
|
||||||
|
pitchf,
|
||||||
|
times,
|
||||||
|
index,
|
||||||
|
big_npy,
|
||||||
|
index_rate,
|
||||||
|
embChannels=256,
|
||||||
|
): # ,file_index,file_big_npy
|
||||||
|
feats = torch.from_numpy(audio0)
|
||||||
|
if self.is_half == True:
|
||||||
|
feats = feats.half()
|
||||||
|
else:
|
||||||
|
feats = feats.float()
|
||||||
|
if feats.dim() == 2: # double channels
|
||||||
|
feats = feats.mean(-1)
|
||||||
|
assert feats.dim() == 1, feats.dim()
|
||||||
|
feats = feats.view(1, -1)
|
||||||
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||||
|
if embChannels == 256:
|
||||||
|
inputs = {
|
||||||
|
"source": feats.to(self.device),
|
||||||
|
"padding_mask": padding_mask,
|
||||||
|
"output_layer": 9, # layer 9
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
inputs = {
|
||||||
|
"source": feats.to(self.device),
|
||||||
|
"padding_mask": padding_mask,
|
||||||
|
}
|
||||||
|
|
||||||
|
t0 = ttime()
|
||||||
|
with torch.no_grad():
|
||||||
|
logits = model.extract_features(**inputs)
|
||||||
|
if embChannels == 256:
|
||||||
|
feats = model.final_proj(logits[0])
|
||||||
|
else:
|
||||||
|
feats = logits[0]
|
||||||
|
|
||||||
|
if (
|
||||||
|
isinstance(index, type(None)) == False
|
||||||
|
and isinstance(big_npy, type(None)) == False
|
||||||
|
and index_rate != 0
|
||||||
|
):
|
||||||
|
npy = feats[0].cpu().numpy()
|
||||||
|
if self.is_half == True:
|
||||||
|
npy = npy.astype("float32")
|
||||||
|
D, I = index.search(npy, 1)
|
||||||
|
npy = big_npy[I.squeeze()]
|
||||||
|
if self.is_half == True:
|
||||||
|
npy = npy.astype("float16")
|
||||||
|
feats = (
|
||||||
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
||||||
|
+ (1 - index_rate) * feats
|
||||||
|
)
|
||||||
|
|
||||||
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||||
|
|
||||||
|
t1 = ttime()
|
||||||
|
p_len = audio0.shape[0] // self.window
|
||||||
|
if feats.shape[1] < p_len:
|
||||||
|
p_len = feats.shape[1]
|
||||||
|
if pitch != None and pitchf != None:
|
||||||
|
pitch = pitch[:, :p_len]
|
||||||
|
pitchf = pitchf[:, :p_len]
|
||||||
|
p_len = torch.tensor([p_len], device=self.device).long()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
if pitch != None:
|
||||||
|
audio1 = (
|
||||||
|
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if hasattr(net_g, "infer_pitchless"):
|
||||||
|
audio1 = (
|
||||||
|
(net_g.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
audio1 = (
|
||||||
|
(net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
.numpy()
|
||||||
|
.astype(np.int16)
|
||||||
|
)
|
||||||
|
|
||||||
|
# audio1 = (net_g.infer(feats, p_len, None, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||||
|
|
||||||
|
del feats, p_len, padding_mask
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
t2 = ttime()
|
||||||
|
times[0] += t1 - t0
|
||||||
|
times[2] += t2 - t1
|
||||||
|
return audio1
|
||||||
|
|
||||||
|
def pipeline(
|
||||||
|
self,
|
||||||
|
model,
|
||||||
|
net_g,
|
||||||
|
sid,
|
||||||
|
audio,
|
||||||
|
times,
|
||||||
|
f0_up_key,
|
||||||
|
f0_method,
|
||||||
|
file_index,
|
||||||
|
file_big_npy,
|
||||||
|
index_rate,
|
||||||
|
if_f0,
|
||||||
|
f0_file=None,
|
||||||
|
silence_front=0,
|
||||||
|
embChannels=256,
|
||||||
|
):
|
||||||
|
if (
|
||||||
|
file_big_npy != ""
|
||||||
|
and file_index != ""
|
||||||
|
and os.path.exists(file_big_npy) == True
|
||||||
|
and os.path.exists(file_index) == True
|
||||||
|
and index_rate != 0
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
index = faiss.read_index(file_index)
|
||||||
|
big_npy = np.load(file_big_npy)
|
||||||
|
except:
|
||||||
|
traceback.print_exc()
|
||||||
|
index = big_npy = None
|
||||||
|
else:
|
||||||
|
index = big_npy = None
|
||||||
|
|
||||||
|
audio_opt = []
|
||||||
|
t = None
|
||||||
|
t1 = ttime()
|
||||||
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
||||||
|
p_len = audio_pad.shape[0] // self.window
|
||||||
|
inp_f0 = None
|
||||||
|
|
||||||
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||||||
|
pitch, pitchf = None, None
|
||||||
|
if if_f0 == 1:
|
||||||
|
pitch, pitchf = self.get_f0(
|
||||||
|
audio_pad,
|
||||||
|
p_len,
|
||||||
|
f0_up_key,
|
||||||
|
f0_method,
|
||||||
|
inp_f0,
|
||||||
|
silence_front=silence_front,
|
||||||
|
)
|
||||||
|
pitch = pitch[:p_len]
|
||||||
|
pitchf = pitchf[:p_len]
|
||||||
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
||||||
|
pitchf = torch.tensor(
|
||||||
|
pitchf, device=self.device, dtype=torch.float
|
||||||
|
).unsqueeze(0)
|
||||||
|
|
||||||
|
t2 = ttime()
|
||||||
|
times[1] += t2 - t1
|
||||||
|
if self.t_pad_tgt == 0:
|
||||||
|
audio_opt.append(
|
||||||
|
self.vc(
|
||||||
|
model,
|
||||||
|
net_g,
|
||||||
|
sid,
|
||||||
|
audio_pad[t:],
|
||||||
|
pitch[:, t // self.window :] if t is not None else pitch,
|
||||||
|
pitchf[:, t // self.window :] if t is not None else pitchf,
|
||||||
|
times,
|
||||||
|
index,
|
||||||
|
big_npy,
|
||||||
|
index_rate,
|
||||||
|
embChannels,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
audio_opt.append(
|
||||||
|
self.vc(
|
||||||
|
model,
|
||||||
|
net_g,
|
||||||
|
sid,
|
||||||
|
audio_pad[t:],
|
||||||
|
pitch[:, t // self.window :] if t is not None else pitch,
|
||||||
|
pitchf[:, t // self.window :] if t is not None else pitchf,
|
||||||
|
times,
|
||||||
|
index,
|
||||||
|
big_npy,
|
||||||
|
index_rate,
|
||||||
|
embChannels,
|
||||||
|
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||||
|
)
|
||||||
|
|
||||||
|
audio_opt = np.concatenate(audio_opt)
|
||||||
|
del pitch, pitchf, sid
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return audio_opt
|
Loading…
Reference in New Issue
Block a user