mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
separate sio
This commit is contained in:
parent
32bd737e14
commit
86e71d05a3
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,2 +1,7 @@
|
||||
dummy
|
||||
node_modules
|
||||
__pycache__
|
||||
|
||||
server/upload_dir/
|
||||
server/MMVC_Trainer/
|
||||
server/key
|
463
server/MMVCServerSIO.py
Executable file
463
server/MMVCServerSIO.py
Executable file
@ -0,0 +1,463 @@
|
||||
import sys, os, struct, argparse, logging, shutil, base64, traceback
|
||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
|
||||
class UvicornSuppressFilter(logging.Filter):
|
||||
def filter(self, record):
|
||||
return False
|
||||
|
||||
logger = logging.getLogger("uvicorn.error")
|
||||
logger.addFilter(UvicornSuppressFilter())
|
||||
# logger.propagate = False
|
||||
logger = logging.getLogger("multipart.multipart")
|
||||
logger.propagate = False
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from distutils.util import strtobool
|
||||
|
||||
import numpy as np
|
||||
from scipy.io.wavfile import write, read
|
||||
|
||||
sys.path.append("MMVC_Trainer")
|
||||
sys.path.append("MMVC_Trainer/text")
|
||||
|
||||
from fastapi.routing import APIRoute
|
||||
from fastapi import HTTPException, Request, Response, FastAPI, UploadFile, File, Form
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
import uvicorn
|
||||
import socketio
|
||||
from pydantic import BaseModel
|
||||
|
||||
from typing import Callable
|
||||
|
||||
from mods.Trainer_Speakers import mod_get_speakers
|
||||
from mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log
|
||||
from mods.Trainer_Model import mod_get_model, mod_delete_model
|
||||
|
||||
from mods.Trainer_Models import mod_get_models
|
||||
from mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting
|
||||
from mods.Trainer_Speaker_Voice import mod_get_speaker_voice
|
||||
from mods.Trainer_Speaker_Voices import mod_get_speaker_voices
|
||||
|
||||
from mods.Trainer_Speaker import mod_delete_speaker
|
||||
from mods.FileUploader import upload_file, concat_file_chunks
|
||||
|
||||
from mods.VoiceChanger import VoiceChanger
|
||||
|
||||
from mods.ssl import create_self_signed_cert
|
||||
|
||||
from sio.MMVC_Namespace import MMVC_Namespace
|
||||
from voice_changer.VoiceChangerManager import VoiceChangerManager
|
||||
@dataclass
|
||||
class ExApplicationInfo():
|
||||
external_tensorboard_port: int
|
||||
|
||||
|
||||
exApplitionInfo = ExApplicationInfo(external_tensorboard_port=0)
|
||||
|
||||
|
||||
class VoiceModel(BaseModel):
|
||||
gpu: int
|
||||
srcId: int
|
||||
dstId: int
|
||||
timestamp: int
|
||||
prefixChunkSize: int
|
||||
buffer: str
|
||||
|
||||
def setupArgParser():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-t", type=str, default="MMVC",
|
||||
help="Server type. MMVC|TRAIN")
|
||||
parser.add_argument("-p", type=int, default=8080, help="port")
|
||||
parser.add_argument("-c", type=str, help="path for the config.json")
|
||||
parser.add_argument("-m", type=str, help="path for the model file")
|
||||
parser.add_argument("--https", type=strtobool,
|
||||
default=False, help="use https")
|
||||
parser.add_argument("--httpsKey", type=str,
|
||||
default="ssl.key", help="path for the key of https")
|
||||
parser.add_argument("--httpsCert", type=str,
|
||||
default="ssl.cert", help="path for the cert of https")
|
||||
parser.add_argument("--httpsSelfSigned", type=strtobool,
|
||||
default=True, help="generate self-signed certificate")
|
||||
parser.add_argument("--colab", type=strtobool,
|
||||
default=False, help="run on colab")
|
||||
return parser
|
||||
|
||||
|
||||
def printMessage(message, level=0):
|
||||
if level == 0:
|
||||
print(f"\033[17m{message}\033[0m")
|
||||
elif level == 1:
|
||||
print(f"\033[34m {message}\033[0m")
|
||||
elif level == 2:
|
||||
print(f"\033[32m {message}\033[0m")
|
||||
else:
|
||||
print(f"\033[47m {message}\033[0m")
|
||||
|
||||
|
||||
|
||||
global app_socketio
|
||||
global app_fastapi
|
||||
|
||||
parser = setupArgParser()
|
||||
args = parser.parse_args()
|
||||
|
||||
printMessage(f"Phase name:{__name__}", level=2)
|
||||
thisFilename = os.path.basename(__file__)[:-3]
|
||||
|
||||
|
||||
class ValidationErrorLoggingRoute(APIRoute):
|
||||
def get_route_handler(self) -> Callable:
|
||||
original_route_handler = super().get_route_handler()
|
||||
|
||||
async def custom_route_handler(request: Request) -> Response:
|
||||
try:
|
||||
return await original_route_handler(request)
|
||||
except Exception as exc:
|
||||
print("Exception", request.url, str(exc))
|
||||
body = await request.body()
|
||||
detail = {"errors": exc.errors(), "body": body.decode()}
|
||||
raise HTTPException(status_code=422, detail=detail)
|
||||
|
||||
return custom_route_handler
|
||||
|
||||
|
||||
if __name__ == thisFilename or args.colab == True:
|
||||
printMessage(f"PHASE3:{__name__}", level=2)
|
||||
TYPE = args.t
|
||||
PORT = args.p
|
||||
CONFIG = args.c
|
||||
MODEL = args.m
|
||||
|
||||
if os.getenv("EX_TB_PORT"):
|
||||
EX_TB_PORT = os.environ["EX_TB_PORT"]
|
||||
exApplitionInfo.external_tensorboard_port = int(EX_TB_PORT)
|
||||
|
||||
|
||||
app_fastapi = FastAPI()
|
||||
app_fastapi.router.route_class = ValidationErrorLoggingRoute
|
||||
app_fastapi.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
app_fastapi.mount(
|
||||
"/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
app_fastapi.mount(
|
||||
"/trainer", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
app_fastapi.mount(
|
||||
"/recorder", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
sio = socketio.AsyncServer(
|
||||
async_mode='asgi',
|
||||
cors_allowed_origins='*'
|
||||
)
|
||||
voiceChangerManager = VoiceChangerManager.get_instance()
|
||||
namespace = MMVC_Namespace.get_instance(voiceChangerManager)
|
||||
sio.register_namespace(namespace)
|
||||
if CONFIG and MODEL:
|
||||
voiceChangerManager.loadModel(CONFIG, MODEL)
|
||||
# namespace.loadWhisperModel("base")
|
||||
|
||||
app_socketio = socketio.ASGIApp(
|
||||
sio,
|
||||
other_asgi_app=app_fastapi,
|
||||
static_files={
|
||||
'/assets/icons/github.svg': {
|
||||
'filename': '../frontend/dist/assets/icons/github.svg',
|
||||
'content_type': 'image/svg+xml'
|
||||
},
|
||||
'': '../frontend/dist',
|
||||
'/': '../frontend/dist/index.html',
|
||||
}
|
||||
)
|
||||
|
||||
@app_fastapi.get("/api/hello")
|
||||
async def index():
|
||||
return {"result": "Index"}
|
||||
|
||||
############
|
||||
# File Uploder
|
||||
# ##########
|
||||
UPLOAD_DIR = "upload_dir"
|
||||
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
||||
MODEL_DIR = "MMVC_Trainer/logs"
|
||||
os.makedirs(MODEL_DIR, exist_ok=True)
|
||||
|
||||
@app_fastapi.post("/upload_file")
|
||||
async def post_upload_file(
|
||||
file: UploadFile = File(...),
|
||||
filename: str = Form(...)
|
||||
):
|
||||
return upload_file(UPLOAD_DIR, file, filename)
|
||||
|
||||
@app_fastapi.post("/load_model")
|
||||
async def post_load_model(
|
||||
modelFilename: str = Form(...),
|
||||
modelFilenameChunkNum: int = Form(...),
|
||||
configFilename: str = Form(...)
|
||||
):
|
||||
|
||||
modelFilePath = concat_file_chunks(
|
||||
UPLOAD_DIR, modelFilename, modelFilenameChunkNum, UPLOAD_DIR)
|
||||
print(f'File saved to: {modelFilePath}')
|
||||
configFilePath = os.path.join(UPLOAD_DIR, configFilename)
|
||||
|
||||
voiceChangerManager.loadModel(configFilePath, modelFilePath)
|
||||
return {"load": f"{modelFilePath}, {configFilePath}"}
|
||||
|
||||
@app_fastapi.post("/load_model_for_train")
|
||||
async def post_load_model_for_train(
|
||||
modelGFilename: str = Form(...),
|
||||
modelGFilenameChunkNum: int = Form(...),
|
||||
modelDFilename: str = Form(...),
|
||||
modelDFilenameChunkNum: int = Form(...),
|
||||
):
|
||||
|
||||
modelGFilePath = concat_file_chunks(
|
||||
UPLOAD_DIR, modelGFilename, modelGFilenameChunkNum, MODEL_DIR)
|
||||
modelDFilePath = concat_file_chunks(
|
||||
UPLOAD_DIR, modelDFilename, modelDFilenameChunkNum, MODEL_DIR)
|
||||
return {"File saved": f"{modelGFilePath}, {modelDFilePath}"}
|
||||
|
||||
@app_fastapi.post("/extract_voices")
|
||||
async def post_load_model(
|
||||
zipFilename: str = Form(...),
|
||||
zipFileChunkNum: int = Form(...),
|
||||
):
|
||||
zipFilePath = concat_file_chunks(
|
||||
UPLOAD_DIR, zipFilename, zipFileChunkNum, UPLOAD_DIR)
|
||||
shutil.unpack_archive(zipFilePath, "MMVC_Trainer/dataset/textful/")
|
||||
return {"Zip file unpacked": f"{zipFilePath}"}
|
||||
|
||||
############
|
||||
# Voice Changer
|
||||
# ##########
|
||||
|
||||
@app_fastapi.post("/test")
|
||||
async def post_test(voice: VoiceModel):
|
||||
try:
|
||||
# print("POST REQUEST PROCESSING....")
|
||||
gpu = voice.gpu
|
||||
srcId = voice.srcId
|
||||
dstId = voice.dstId
|
||||
timestamp = voice.timestamp
|
||||
prefixChunkSize = voice.prefixChunkSize
|
||||
buffer = voice.buffer
|
||||
wav = base64.b64decode(buffer)
|
||||
|
||||
if wav == 0:
|
||||
samplerate, data = read("dummy.wav")
|
||||
unpackedData = data
|
||||
else:
|
||||
unpackedData = np.array(struct.unpack(
|
||||
'<%sh' % (len(wav) // struct.calcsize('<h')), wav))
|
||||
# write("logs/received_data.wav", 24000,
|
||||
# unpackedData.astype(np.int16))
|
||||
|
||||
changedVoice = voiceChangerManager.changeVoice(
|
||||
gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
|
||||
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
||||
data = {
|
||||
"gpu": gpu,
|
||||
"srcId": srcId,
|
||||
"dstId": dstId,
|
||||
"timestamp": timestamp,
|
||||
"prefixChunkSize": prefixChunkSize,
|
||||
"changedVoiceBase64": changedVoiceBase64
|
||||
}
|
||||
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
|
||||
except Exception as e:
|
||||
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
# Trainer REST API ※ ColabがTop直下のパスにしかPOSTを投げれないようなので"REST風"
|
||||
|
||||
@app_fastapi.get("/get_speakers")
|
||||
async def get_speakers():
|
||||
return mod_get_speakers()
|
||||
|
||||
@app_fastapi.delete("/delete_speaker")
|
||||
async def delete_speaker(speaker: str = Form(...)):
|
||||
return mod_delete_speaker(speaker)
|
||||
|
||||
@app_fastapi.get("/get_speaker_voices")
|
||||
async def get_speaker_voices(speaker: str):
|
||||
return mod_get_speaker_voices(speaker)
|
||||
|
||||
@app_fastapi.get("/get_speaker_voice")
|
||||
async def get_speaker_voices(speaker: str, voice: str):
|
||||
return mod_get_speaker_voice(speaker, voice)
|
||||
|
||||
@app_fastapi.get("/get_multi_speaker_setting")
|
||||
async def get_multi_speaker_setting():
|
||||
return mod_get_multi_speaker_setting()
|
||||
|
||||
@app_fastapi.post("/post_multi_speaker_setting")
|
||||
async def post_multi_speaker_setting(setting: str = Form(...)):
|
||||
return mod_post_multi_speaker_setting(setting)
|
||||
|
||||
@app_fastapi.get("/get_models")
|
||||
async def get_models():
|
||||
return mod_get_models()
|
||||
|
||||
@app_fastapi.get("/get_model")
|
||||
async def get_model(model: str):
|
||||
return mod_get_model(model)
|
||||
|
||||
@app_fastapi.delete("/delete_model")
|
||||
async def delete_model(model: str = Form(...)):
|
||||
return mod_delete_model(model)
|
||||
|
||||
@app_fastapi.post("/post_pre_training")
|
||||
async def post_pre_training(batch: int = Form(...)):
|
||||
return mod_post_pre_training(batch)
|
||||
|
||||
@app_fastapi.post("/post_start_training")
|
||||
async def post_start_training(enable_finetuning: bool = Form(...),GModel: str = Form(...),DModel: str = Form(...)):
|
||||
print("POST START TRAINING..")
|
||||
return mod_post_start_training(enable_finetuning, GModel, DModel)
|
||||
|
||||
@app_fastapi.post("/post_stop_training")
|
||||
async def post_stop_training():
|
||||
print("POST STOP TRAINING..")
|
||||
return mod_post_stop_training()
|
||||
|
||||
@app_fastapi.get("/get_related_files")
|
||||
async def get_related_files():
|
||||
return mod_get_related_files()
|
||||
|
||||
@app_fastapi.get("/get_tail_training_log")
|
||||
async def get_tail_training_log(num: int):
|
||||
return mod_get_tail_training_log(num)
|
||||
|
||||
@app_fastapi.get("/get_ex_application_info")
|
||||
async def get_ex_application_info():
|
||||
json_compatible_item_data = jsonable_encoder(exApplitionInfo)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
|
||||
if __name__ == '__mp_main__':
|
||||
printMessage(f"PHASE2adasdfadfasd:{__name__}", level=2)
|
||||
|
||||
if __name__ == '__main__':
|
||||
printMessage(f"PHASE1:{__name__}", level=2)
|
||||
TYPE = args.t
|
||||
PORT = args.p
|
||||
CONFIG = args.c
|
||||
MODEL = args.m
|
||||
|
||||
if TYPE != "MMVC" and TYPE != "TRAIN":
|
||||
print("Type(-t) should be MMVC or TRAIN")
|
||||
exit(1)
|
||||
|
||||
printMessage(f"Start MMVC SocketIO Server", level=0)
|
||||
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
|
||||
|
||||
if args.colab == False:
|
||||
if os.getenv("EX_PORT"):
|
||||
EX_PORT = os.environ["EX_PORT"]
|
||||
printMessage(
|
||||
f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
|
||||
else:
|
||||
printMessage(f"Internal_Port:{PORT}", level=1)
|
||||
|
||||
if os.getenv("EX_TB_PORT"):
|
||||
EX_TB_PORT = os.environ["EX_TB_PORT"]
|
||||
printMessage(f"External_TeonsorBord_Port:{EX_TB_PORT}", level=1)
|
||||
|
||||
if os.getenv("EX_IP"):
|
||||
EX_IP = os.environ["EX_IP"]
|
||||
printMessage(f"External_IP:{EX_IP}", level=1)
|
||||
|
||||
# HTTPS key/cert作成
|
||||
if args.https and args.httpsSelfSigned == 1:
|
||||
# HTTPS(おれおれ証明書生成)
|
||||
os.makedirs("./key", exist_ok=True)
|
||||
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
||||
keyname = f"{key_base_name}.key"
|
||||
certname = f"{key_base_name}.cert"
|
||||
create_self_signed_cert(certname, keyname, certargs={"Country": "JP",
|
||||
"State": "Tokyo",
|
||||
"City": "Chuo-ku",
|
||||
"Organization": "F",
|
||||
"Org. Unit": "F"}, cert_dir="./key")
|
||||
key_path = os.path.join("./key", keyname)
|
||||
cert_path = os.path.join("./key", certname)
|
||||
printMessage(
|
||||
f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
|
||||
elif args.https and args.httpsSelfSigned == 0:
|
||||
# HTTPS
|
||||
key_path = args.httpsKey
|
||||
cert_path = args.httpsCert
|
||||
printMessage(
|
||||
f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
|
||||
else:
|
||||
# HTTP
|
||||
printMessage(f"protocol: HTTP", level=1)
|
||||
|
||||
# アドレス表示
|
||||
if args.https == 1:
|
||||
printMessage(
|
||||
f"open https://<IP>:<PORT>/ with your browser.", level=0)
|
||||
else:
|
||||
printMessage(
|
||||
f"open http://<IP>:<PORT>/ with your browser.", level=0)
|
||||
|
||||
if TYPE == "MMVC":
|
||||
path = ""
|
||||
else:
|
||||
path = "trainer"
|
||||
if "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 1:
|
||||
printMessage(f"In many cases it is one of the following", level=1)
|
||||
printMessage(f"https://localhost:{EX_PORT}/{path}", level=1)
|
||||
for ip in EX_IP.strip().split(" "):
|
||||
printMessage(f"https://{ip}:{EX_PORT}/{path}", level=1)
|
||||
elif "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 0:
|
||||
printMessage(f"In many cases it is one of the following", level=1)
|
||||
printMessage(f"http://localhost:{EX_PORT}/{path}", level=1)
|
||||
|
||||
# サーバ起動
|
||||
if args.https:
|
||||
# HTTPS サーバ起動
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
reload=True,
|
||||
ssl_keyfile=key_path,
|
||||
ssl_certfile=cert_path,
|
||||
log_level="critical"
|
||||
)
|
||||
else:
|
||||
# HTTP サーバ起動
|
||||
if args.colab == True:
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_fastapi",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
log_level="critical"
|
||||
)
|
||||
else:
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
reload=True,
|
||||
log_level="critical"
|
||||
)
|
||||
|
43
server/sio/MMVC_Namespace.py
Normal file
43
server/sio/MMVC_Namespace.py
Normal file
@ -0,0 +1,43 @@
|
||||
import struct
|
||||
from datetime import datetime
|
||||
import numpy as np
|
||||
import socketio
|
||||
from voice_changer.VoiceChangerManager import VoiceChangerManager
|
||||
|
||||
|
||||
class MMVC_Namespace(socketio.AsyncNamespace):
|
||||
def __init__(self, namespace:str, voiceChangerManager:VoiceChangerManager):
|
||||
super().__init__(namespace)
|
||||
self.voiceChangerManager = voiceChangerManager
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls, voiceChangerManager:VoiceChangerManager):
|
||||
if not hasattr(cls, "_instance"):
|
||||
cls._instance = cls("/test", voiceChangerManager)
|
||||
return cls._instance
|
||||
|
||||
def on_connect(self, sid, environ):
|
||||
# print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||||
pass
|
||||
|
||||
async def on_request_message(self, sid, msg):
|
||||
# print("on_request_message", torch.cuda.memory_allocated())
|
||||
gpu = int(msg[0])
|
||||
srcId = int(msg[1])
|
||||
dstId = int(msg[2])
|
||||
timestamp = int(msg[3])
|
||||
prefixChunkSize = int(msg[4])
|
||||
data = msg[5]
|
||||
# print(srcId, dstId, timestamp)
|
||||
unpackedData = np.array(struct.unpack(
|
||||
'<%sh' % (len(data) // struct.calcsize('<h')), data))
|
||||
audio1 = self.voiceChangerManager.changeVoice(
|
||||
gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
|
||||
bin = struct.pack('<%sh' % len(audio1), *audio1)
|
||||
await self.emit('response', [timestamp, bin])
|
||||
|
||||
def on_disconnect(self, sid):
|
||||
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
|
||||
pass
|
||||
|
21
server/voice_changer/VoiceChangerManager.py
Normal file
21
server/voice_changer/VoiceChangerManager.py
Normal file
@ -0,0 +1,21 @@
|
||||
import numpy as np
|
||||
from mods.VoiceChanger import VoiceChanger
|
||||
|
||||
class VoiceChangerManager():
|
||||
@classmethod
|
||||
def get_instance(cls):
|
||||
if not hasattr(cls, "_instance"):
|
||||
cls._instance = cls()
|
||||
return cls._instance
|
||||
|
||||
def loadModel(self, config, model):
|
||||
if hasattr(self, 'voiceChanger') == True:
|
||||
self.voiceChanger.destroy()
|
||||
self.voiceChanger = VoiceChanger(config, model)
|
||||
|
||||
def changeVoice(self, gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData):
|
||||
if hasattr(self, 'voiceChanger') == True:
|
||||
return self.voiceChanger.on_request(gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
else:
|
||||
print("Voice Change is not loaded. Did you load a correct model?")
|
||||
return np.zeros(1).astype(np.int16)
|
Loading…
Reference in New Issue
Block a user