mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
WIP: supprt vrc
This commit is contained in:
parent
98e14a9d4a
commit
8d3b4e1c7d
68
client/demo_v13/dist/assets/gui_settings/RVC.json
vendored
Normal file
68
client/demo_v13/dist/assets/gui_settings/RVC.json
vendored
Normal file
@ -0,0 +1,68 @@
|
||||
{
|
||||
"type": "demo",
|
||||
"id": "RVC",
|
||||
"front": {
|
||||
"title": {
|
||||
"mainTitle": "VC Client",
|
||||
"subTitle": "for RVC",
|
||||
"lineNum": 1
|
||||
},
|
||||
"serverControl": {
|
||||
"modelInfoEnable": true
|
||||
},
|
||||
"modelSetting": {
|
||||
"ONNXEnable": true,
|
||||
"pyTorchEnable": true,
|
||||
"MMVCCorrespondense": false,
|
||||
"pyTorchClusterEnable": false,
|
||||
"showPyTorchDefault": false,
|
||||
"frameworkEnable": true,
|
||||
"modelUploaderEnable": true,
|
||||
"configRow": true,
|
||||
"uploadRow": true
|
||||
},
|
||||
"deviceSetting": {},
|
||||
"qualityControl": {
|
||||
"F0DetectorEnable": false,
|
||||
"analyzerRow": true,
|
||||
"samplingRow": true,
|
||||
"playRow": true
|
||||
},
|
||||
"speakerSetting": {
|
||||
"srcIdEnable": true,
|
||||
"dstIdEnable": true,
|
||||
"editSpeakerIdMappingEnable": true,
|
||||
"f0FactorEnable": false,
|
||||
"tuningEnable": false,
|
||||
"clusterInferRationEnable": false,
|
||||
"noiseScaleEnable": false,
|
||||
"silentThresholdEnable": false
|
||||
},
|
||||
"converterSetting": {
|
||||
"extraDataLengthEnable": false
|
||||
},
|
||||
"advancedSetting": {
|
||||
"serverURLEnable": true,
|
||||
"protocolEnable": true,
|
||||
"sampleRateEnable": true,
|
||||
"sendingSampleRateEnable": true,
|
||||
"crossFadeOverlapSizeEnable": true,
|
||||
"crossFadeOffsetRateEnable": true,
|
||||
"crossFadeEndRateEnable": true,
|
||||
"downSamplingModeEnable": true,
|
||||
"trancateNumTresholdEnable": true
|
||||
}
|
||||
},
|
||||
|
||||
"dialogs": {
|
||||
"license": [
|
||||
{
|
||||
"title": "c",
|
||||
"auther": "c",
|
||||
"contact": "b",
|
||||
"url": "a",
|
||||
"license": "MIT"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
@ -30,6 +30,7 @@
|
||||
},
|
||||
"speakerSetting": {
|
||||
"srcIdEnable": false,
|
||||
"dstIdEnable": true,
|
||||
"editSpeakerIdMappingEnable": false,
|
||||
"f0FactorEnable": false,
|
||||
"tuningEnable": true,
|
||||
|
@ -30,6 +30,7 @@
|
||||
},
|
||||
"speakerSetting": {
|
||||
"srcIdEnable": false,
|
||||
"dstIdEnable": false,
|
||||
"editSpeakerIdMappingEnable": false,
|
||||
"f0FactorEnable": false,
|
||||
"tuningEnable": true,
|
||||
|
68
client/demo_v13/public/assets/gui_settings/RVC.json
Normal file
68
client/demo_v13/public/assets/gui_settings/RVC.json
Normal file
@ -0,0 +1,68 @@
|
||||
{
|
||||
"type": "demo",
|
||||
"id": "RVC",
|
||||
"front": {
|
||||
"title": {
|
||||
"mainTitle": "VC Client",
|
||||
"subTitle": "for RVC",
|
||||
"lineNum": 1
|
||||
},
|
||||
"serverControl": {
|
||||
"modelInfoEnable": true
|
||||
},
|
||||
"modelSetting": {
|
||||
"ONNXEnable": true,
|
||||
"pyTorchEnable": true,
|
||||
"MMVCCorrespondense": false,
|
||||
"pyTorchClusterEnable": false,
|
||||
"showPyTorchDefault": false,
|
||||
"frameworkEnable": true,
|
||||
"modelUploaderEnable": true,
|
||||
"configRow": true,
|
||||
"uploadRow": true
|
||||
},
|
||||
"deviceSetting": {},
|
||||
"qualityControl": {
|
||||
"F0DetectorEnable": false,
|
||||
"analyzerRow": true,
|
||||
"samplingRow": true,
|
||||
"playRow": true
|
||||
},
|
||||
"speakerSetting": {
|
||||
"srcIdEnable": true,
|
||||
"dstIdEnable": true,
|
||||
"editSpeakerIdMappingEnable": true,
|
||||
"f0FactorEnable": false,
|
||||
"tuningEnable": false,
|
||||
"clusterInferRationEnable": false,
|
||||
"noiseScaleEnable": false,
|
||||
"silentThresholdEnable": false
|
||||
},
|
||||
"converterSetting": {
|
||||
"extraDataLengthEnable": false
|
||||
},
|
||||
"advancedSetting": {
|
||||
"serverURLEnable": true,
|
||||
"protocolEnable": true,
|
||||
"sampleRateEnable": true,
|
||||
"sendingSampleRateEnable": true,
|
||||
"crossFadeOverlapSizeEnable": true,
|
||||
"crossFadeOffsetRateEnable": true,
|
||||
"crossFadeEndRateEnable": true,
|
||||
"downSamplingModeEnable": true,
|
||||
"trancateNumTresholdEnable": true
|
||||
}
|
||||
},
|
||||
|
||||
"dialogs": {
|
||||
"license": [
|
||||
{
|
||||
"title": "c",
|
||||
"auther": "c",
|
||||
"contact": "b",
|
||||
"url": "a",
|
||||
"license": "MIT"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
@ -9,7 +9,8 @@ export const ClientType = {
|
||||
"MMVCv13": "MMVCv13",
|
||||
"so-vits-svc-40": "so-vits-svc-40",
|
||||
"so-vits-svc-40_c": "so-vits-svc-40_c",
|
||||
"so-vits-svc-40v2": "so-vits-svc-40v2"
|
||||
"so-vits-svc-40v2": "so-vits-svc-40v2",
|
||||
"RVC": "RVC"
|
||||
|
||||
} as const
|
||||
export type ClientType = typeof ClientType[keyof typeof ClientType]
|
||||
|
1
server/RVC
Submodule
1
server/RVC
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit ebd938ff78dcfbfca17e5725e339862a57e52c89
|
@ -8,8 +8,8 @@ class UvicornSuppressFilter(logging.Filter):
|
||||
return False
|
||||
|
||||
|
||||
logger = logging.getLogger("uvicorn.error")
|
||||
logger.addFilter(UvicornSuppressFilter())
|
||||
# logger = logging.getLogger("uvicorn.error")
|
||||
# logger.addFilter(UvicornSuppressFilter())
|
||||
|
||||
logger = logging.getLogger("fairseq.tasks.hubert_pretraining")
|
||||
logger.addFilter(UvicornSuppressFilter())
|
||||
|
379
server/voice_changer/RVC/RVC.py
Normal file
379
server/voice_changer/RVC/RVC.py
Normal file
@ -0,0 +1,379 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.argv = ["MMVCServerSIO.py"]
|
||||
|
||||
if sys.platform.startswith('darwin'):
|
||||
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
||||
if len(baseDir) != 1:
|
||||
print("baseDir should be only one ", baseDir)
|
||||
sys.exit()
|
||||
modulePath = os.path.join(baseDir[0], "RVC")
|
||||
sys.path.append(modulePath)
|
||||
else:
|
||||
sys.path.append("RVC")
|
||||
|
||||
print("RVC 3")
|
||||
import io
|
||||
from dataclasses import dataclass, asdict, field
|
||||
from functools import reduce
|
||||
import numpy as np
|
||||
import torch
|
||||
import onnxruntime
|
||||
# onnxruntime.set_default_logger_severity(3)
|
||||
from const import HUBERT_ONNX_MODEL_PATH
|
||||
|
||||
import pyworld as pw
|
||||
|
||||
from vc_infer_pipeline import VC
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||||
from fairseq import checkpoint_utils
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
|
||||
@dataclass
|
||||
class RVCSettings():
|
||||
gpu: int = 0
|
||||
dstId: int = 0
|
||||
|
||||
f0Detector: str = "dio" # dio or harvest
|
||||
tran: int = 20
|
||||
noiceScale: float = 0.3
|
||||
predictF0: int = 0 # 0:False, 1:True
|
||||
silentThreshold: float = 0.00001
|
||||
extraConvertSize: int = 1024 * 32
|
||||
clusterInferRatio: float = 0.1
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str = ""
|
||||
onnxModelFile: str = ""
|
||||
configFile: str = ""
|
||||
|
||||
speakers: dict[str, int] = field(
|
||||
default_factory=lambda: {}
|
||||
)
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
|
||||
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
|
||||
strData = ["framework", "f0Detector"]
|
||||
|
||||
|
||||
class RVC:
|
||||
def __init__(self, params):
|
||||
self.settings = RVCSettings()
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
|
||||
self.raw_path = io.BytesIO()
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.prevVol = 0
|
||||
self.params = params
|
||||
print("RVC initialization: ", params)
|
||||
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
|
||||
self.device = torch.device("cuda", index=self.settings.gpu)
|
||||
self.settings.configFile = config
|
||||
# self.hps = utils.get_hparams_from_file(config)
|
||||
# self.settings.speakers = self.hps.spk
|
||||
|
||||
# hubert model
|
||||
try:
|
||||
# hubert_path = self.params["hubert"]
|
||||
# useHubertOnnx = self.params["useHubertOnnx"]
|
||||
# self.useHubertOnnx = useHubertOnnx
|
||||
|
||||
# if useHubertOnnx == True:
|
||||
# ort_options = onnxruntime.SessionOptions()
|
||||
# ort_options.intra_op_num_threads = 8
|
||||
# self.hubert_onnx = onnxruntime.InferenceSession(
|
||||
# HUBERT_ONNX_MODEL_PATH,
|
||||
# providers=providers
|
||||
# )
|
||||
# else:
|
||||
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
# [hubert_path],
|
||||
# suffix="",
|
||||
# )
|
||||
# model = models[0]
|
||||
# model.eval()
|
||||
# self.hubert_model = model.cpu()
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="",)
|
||||
model = models[0]
|
||||
model.eval()
|
||||
# model = model.half()
|
||||
self.hubert_model = model
|
||||
self.hubert_model = self.hubert_model.to(self.device)
|
||||
|
||||
except Exception as e:
|
||||
print("EXCEPTION during loading hubert/contentvec model", e)
|
||||
|
||||
if pyTorch_model_file != None:
|
||||
self.settings.pyTorchModelFile = pyTorch_model_file
|
||||
if onnx_model_file:
|
||||
self.settings.onnxModelFile = onnx_model_file
|
||||
|
||||
# PyTorchモデル生成
|
||||
if pyTorch_model_file != None:
|
||||
cpt = torch.load(pyTorch_model_file, map_location="cpu")
|
||||
self.tgt_sr = cpt["config"][-1]
|
||||
# n_spk = cpt["config"][-3]
|
||||
is_half = False
|
||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
||||
net_g.eval()
|
||||
net_g.load_state_dict(cpt["weight"], strict=False)
|
||||
# net_g = net_g.half()
|
||||
self.net_g = net_g
|
||||
self.net_g = self.net_g.to(self.device)
|
||||
|
||||
# self.net_g = SynthesizerTrn(
|
||||
# self.hps.data.filter_length // 2 + 1,
|
||||
# self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
# **self.hps.model
|
||||
# )
|
||||
# self.net_g.eval()
|
||||
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
ort_options = onnxruntime.SessionOptions()
|
||||
ort_options.intra_op_num_threads = 8
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
onnx_model_file,
|
||||
providers=providers
|
||||
)
|
||||
# input_info = self.onnx_session.get_inputs()
|
||||
# for i in input_info:
|
||||
# print("input", i)
|
||||
# output_info = self.onnx_session.get_outputs()
|
||||
# for i in output_info:
|
||||
# print("output", i)
|
||||
return self.get_info()
|
||||
|
||||
def update_setteings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
||||
if val == "CUDAExecutionProvider":
|
||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||
self.settings.gpu = 0
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
||||
if hasattr(self, "hubert_onnx"):
|
||||
self.hubert_onnx.set_providers(providers=[val], provider_options=provider_options)
|
||||
else:
|
||||
self.onnx_session.set_providers(providers=[val])
|
||||
if hasattr(self, "hubert_onnx"):
|
||||
self.hubert_onnx.set_providers(providers=[val])
|
||||
elif key == "onnxExecutionProvider" and self.onnx_session == None:
|
||||
print("Onnx is not enabled. Please load model.")
|
||||
return False
|
||||
elif key in self.settings.intData:
|
||||
setattr(self.settings, key, int(val))
|
||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
||||
providers = self.onnx_session.get_providers()
|
||||
print("Providers:", providers)
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
setattr(self.settings, key, str(val))
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
def get_processing_sampling_rate(self):
|
||||
return self.tgt_sr
|
||||
# return 24000
|
||||
|
||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
||||
# import wave
|
||||
# filename = "testc2.wav"
|
||||
# if os.path.exists(filename):
|
||||
# print("[IORecorder] delete old analyze file.", filename)
|
||||
# os.remove(filename)
|
||||
# fo = wave.open(filename, 'wb')
|
||||
# fo.setnchannels(1)
|
||||
# fo.setsampwidth(2)
|
||||
# # fo.setframerate(24000)
|
||||
# fo.setframerate(self.tgt_sr)
|
||||
# fo.writeframes(newData.astype(np.int16))
|
||||
# fo.close()
|
||||
|
||||
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
||||
newData = newData.astype(np.float32) / 32768.0
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
|
||||
|
||||
# if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||
# convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
|
||||
convertSize = convertSize + (128 - (convertSize % 128))
|
||||
|
||||
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
||||
|
||||
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
||||
rms = np.sqrt(np.square(crop).mean(axis=0))
|
||||
vol = max(rms, self.prevVol * 0.0)
|
||||
self.prevVol = vol
|
||||
|
||||
import wave
|
||||
filename = "testc2.wav"
|
||||
if os.path.exists(filename):
|
||||
print("[IORecorder] delete old analyze file.", filename)
|
||||
os.remove(filename)
|
||||
fo = wave.open(filename, 'wb')
|
||||
fo.setnchannels(1)
|
||||
fo.setsampwidth(2)
|
||||
# fo.setframerate(24000)
|
||||
fo.setframerate(self.tgt_sr)
|
||||
fo.writeframes((self.audio_buffer * 32768.0).astype(np.int16))
|
||||
fo.close()
|
||||
|
||||
return (self.audio_buffer, convertSize, vol)
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
pass
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") == False or self.net_g == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
audio = data[0]
|
||||
convertSize = data[1]
|
||||
vol = data[2]
|
||||
# from scipy.io import wavfile
|
||||
# # wavfile.write("testa.wav", self.tgt_sr, audio * 32768.0)
|
||||
# wavfile.write("testa.wav", 24000, audio * 32768.0)
|
||||
|
||||
filename = "testc2.wav"
|
||||
audio = load_audio(filename, 16000)
|
||||
|
||||
if vol < self.settings.silentThreshold:
|
||||
return np.zeros(convertSize).astype(np.int16)
|
||||
|
||||
is_half = False
|
||||
with torch.no_grad():
|
||||
vc = VC(self.tgt_sr, dev, is_half)
|
||||
sid = 0
|
||||
times = [0, 0, 0]
|
||||
f0_up_key = 0
|
||||
f0_method = "pm"
|
||||
file_index = ""
|
||||
file_big_npy = ""
|
||||
index_rate = 1
|
||||
if_f0 = 1
|
||||
f0_file = None
|
||||
|
||||
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
|
||||
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file)
|
||||
result = audio_out
|
||||
from scipy.io import wavfile
|
||||
wavfile.write("testaaaaa.wav", self.tgt_sr, result)
|
||||
return result
|
||||
|
||||
def inference(self, data):
|
||||
if self.settings.framework == "ONNX":
|
||||
audio = self._onnx_inference(data)
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
return audio
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
|
||||
|
||||
# def resize_f0(x, target_len):
|
||||
# source = np.array(x)
|
||||
# source[source < 0.001] = np.nan
|
||||
# target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
|
||||
# res = np.nan_to_num(target)
|
||||
# return res
|
||||
|
||||
|
||||
# def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||||
# if p_len is None:
|
||||
# p_len = wav_numpy.shape[0] // hop_length
|
||||
# f0, t = pw.dio(
|
||||
# wav_numpy.astype(np.double),
|
||||
# fs=sampling_rate,
|
||||
# f0_ceil=800,
|
||||
# frame_period=1000 * hop_length / sampling_rate,
|
||||
# )
|
||||
# f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
||||
# for index, pitch in enumerate(f0):
|
||||
# f0[index] = round(pitch, 1)
|
||||
# return resize_f0(f0, p_len)
|
||||
|
||||
|
||||
# def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
||||
# if p_len is None:
|
||||
# p_len = wav_numpy.shape[0] // hop_length
|
||||
# f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
||||
|
||||
# for index, pitch in enumerate(f0):
|
||||
# f0[index] = round(pitch, 1)
|
||||
# return resize_f0(f0, p_len)
|
||||
|
||||
|
||||
# def get_hubert_content_layer9(hmodel, wav_16k_tensor):
|
||||
# feats = wav_16k_tensor
|
||||
# if feats.dim() == 2: # double channels
|
||||
# feats = feats.mean(-1)
|
||||
# assert feats.dim() == 1, feats.dim()
|
||||
# feats = feats.view(1, -1)
|
||||
# padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
# inputs = {
|
||||
# "source": feats.to(wav_16k_tensor.device),
|
||||
# "padding_mask": padding_mask.to(wav_16k_tensor.device),
|
||||
# "output_layer": 9, # layer 9
|
||||
# }
|
||||
# with torch.no_grad():
|
||||
# logits = hmodel.extract_features(**inputs)
|
||||
|
||||
# return logits[0].transpose(1, 2)
|
||||
|
||||
|
||||
import ffmpeg
|
||||
|
||||
|
||||
def load_audio(file, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
@ -307,8 +307,6 @@ class SoVitsSvc40:
|
||||
result = audio1
|
||||
return result
|
||||
|
||||
pass
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") == False or self.net_g == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
|
@ -49,23 +49,35 @@ class VoiceChanger():
|
||||
|
||||
self.modelType = getModelType()
|
||||
print("[VoiceChanger] activate model type:", self.modelType)
|
||||
print("RVC!!! 1")
|
||||
if self.modelType == "MMVCv15":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
|
||||
self.voiceChanger = MMVCv15()
|
||||
elif self.modelType == "MMVCv13":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
||||
self.voiceChanger = MMVCv13()
|
||||
elif self.modelType == "so-vits-svc-40v2":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
|
||||
self.voiceChanger = SoVitsSvc40v2(params)
|
||||
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
|
||||
self.voiceChanger = SoVitsSvc40(params)
|
||||
elif self.modelType == "DDSP-SVC":
|
||||
print("RVC!!! 2")
|
||||
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
|
||||
self.voiceChanger = DDSP_SVC(params)
|
||||
elif self.modelType == "RVC":
|
||||
print("RVC!!! 22222222222")
|
||||
from voice_changer.RVC.RVC import RVC
|
||||
print("RVC!!! 2")
|
||||
self.voiceChanger = RVC(params)
|
||||
|
||||
else:
|
||||
print("RVC!!! 3")
|
||||
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
||||
self.voiceChanger = MMVCv13()
|
||||
|
||||
@ -166,7 +178,9 @@ class VoiceChanger():
|
||||
|
||||
if self.settings.inputSampleRate != processing_sampling_rate:
|
||||
newData = resampy.resample(receivedData, self.settings.inputSampleRate, processing_sampling_rate)
|
||||
print("resample", self.settings.inputSampleRate, processing_sampling_rate)
|
||||
else:
|
||||
print("not resample")
|
||||
newData = receivedData
|
||||
# print("t1::::", t1.secs)
|
||||
inputSize = newData.shape[0]
|
||||
@ -205,6 +219,11 @@ class VoiceChanger():
|
||||
print_convert_processing(
|
||||
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
|
||||
print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
|
||||
|
||||
print(
|
||||
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
|
||||
print(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
|
||||
|
||||
powered_cur = cur_overlap * self.np_cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user