WIP: supprt vrc

This commit is contained in:
wataru 2023-04-06 02:31:10 +09:00
parent 98e14a9d4a
commit 8d3b4e1c7d
10 changed files with 541 additions and 5 deletions

View File

@ -0,0 +1,68 @@
{
"type": "demo",
"id": "RVC",
"front": {
"title": {
"mainTitle": "VC Client",
"subTitle": "for RVC",
"lineNum": 1
},
"serverControl": {
"modelInfoEnable": true
},
"modelSetting": {
"ONNXEnable": true,
"pyTorchEnable": true,
"MMVCCorrespondense": false,
"pyTorchClusterEnable": false,
"showPyTorchDefault": false,
"frameworkEnable": true,
"modelUploaderEnable": true,
"configRow": true,
"uploadRow": true
},
"deviceSetting": {},
"qualityControl": {
"F0DetectorEnable": false,
"analyzerRow": true,
"samplingRow": true,
"playRow": true
},
"speakerSetting": {
"srcIdEnable": true,
"dstIdEnable": true,
"editSpeakerIdMappingEnable": true,
"f0FactorEnable": false,
"tuningEnable": false,
"clusterInferRationEnable": false,
"noiseScaleEnable": false,
"silentThresholdEnable": false
},
"converterSetting": {
"extraDataLengthEnable": false
},
"advancedSetting": {
"serverURLEnable": true,
"protocolEnable": true,
"sampleRateEnable": true,
"sendingSampleRateEnable": true,
"crossFadeOverlapSizeEnable": true,
"crossFadeOffsetRateEnable": true,
"crossFadeEndRateEnable": true,
"downSamplingModeEnable": true,
"trancateNumTresholdEnable": true
}
},
"dialogs": {
"license": [
{
"title": "c",
"auther": "c",
"contact": "b",
"url": "a",
"license": "MIT"
}
]
}
}

View File

@ -30,6 +30,7 @@
}, },
"speakerSetting": { "speakerSetting": {
"srcIdEnable": false, "srcIdEnable": false,
"dstIdEnable": true,
"editSpeakerIdMappingEnable": false, "editSpeakerIdMappingEnable": false,
"f0FactorEnable": false, "f0FactorEnable": false,
"tuningEnable": true, "tuningEnable": true,

View File

@ -30,6 +30,7 @@
}, },
"speakerSetting": { "speakerSetting": {
"srcIdEnable": false, "srcIdEnable": false,
"dstIdEnable": false,
"editSpeakerIdMappingEnable": false, "editSpeakerIdMappingEnable": false,
"f0FactorEnable": false, "f0FactorEnable": false,
"tuningEnable": true, "tuningEnable": true,

View File

@ -0,0 +1,68 @@
{
"type": "demo",
"id": "RVC",
"front": {
"title": {
"mainTitle": "VC Client",
"subTitle": "for RVC",
"lineNum": 1
},
"serverControl": {
"modelInfoEnable": true
},
"modelSetting": {
"ONNXEnable": true,
"pyTorchEnable": true,
"MMVCCorrespondense": false,
"pyTorchClusterEnable": false,
"showPyTorchDefault": false,
"frameworkEnable": true,
"modelUploaderEnable": true,
"configRow": true,
"uploadRow": true
},
"deviceSetting": {},
"qualityControl": {
"F0DetectorEnable": false,
"analyzerRow": true,
"samplingRow": true,
"playRow": true
},
"speakerSetting": {
"srcIdEnable": true,
"dstIdEnable": true,
"editSpeakerIdMappingEnable": true,
"f0FactorEnable": false,
"tuningEnable": false,
"clusterInferRationEnable": false,
"noiseScaleEnable": false,
"silentThresholdEnable": false
},
"converterSetting": {
"extraDataLengthEnable": false
},
"advancedSetting": {
"serverURLEnable": true,
"protocolEnable": true,
"sampleRateEnable": true,
"sendingSampleRateEnable": true,
"crossFadeOverlapSizeEnable": true,
"crossFadeOffsetRateEnable": true,
"crossFadeEndRateEnable": true,
"downSamplingModeEnable": true,
"trancateNumTresholdEnable": true
}
},
"dialogs": {
"license": [
{
"title": "c",
"auther": "c",
"contact": "b",
"url": "a",
"license": "MIT"
}
]
}
}

View File

@ -9,7 +9,8 @@ export const ClientType = {
"MMVCv13": "MMVCv13", "MMVCv13": "MMVCv13",
"so-vits-svc-40": "so-vits-svc-40", "so-vits-svc-40": "so-vits-svc-40",
"so-vits-svc-40_c": "so-vits-svc-40_c", "so-vits-svc-40_c": "so-vits-svc-40_c",
"so-vits-svc-40v2": "so-vits-svc-40v2" "so-vits-svc-40v2": "so-vits-svc-40v2",
"RVC": "RVC"
} as const } as const
export type ClientType = typeof ClientType[keyof typeof ClientType] export type ClientType = typeof ClientType[keyof typeof ClientType]

1
server/RVC Submodule

@ -0,0 +1 @@
Subproject commit ebd938ff78dcfbfca17e5725e339862a57e52c89

View File

@ -8,8 +8,8 @@ class UvicornSuppressFilter(logging.Filter):
return False return False
logger = logging.getLogger("uvicorn.error") # logger = logging.getLogger("uvicorn.error")
logger.addFilter(UvicornSuppressFilter()) # logger.addFilter(UvicornSuppressFilter())
logger = logging.getLogger("fairseq.tasks.hubert_pretraining") logger = logging.getLogger("fairseq.tasks.hubert_pretraining")
logger.addFilter(UvicornSuppressFilter()) logger.addFilter(UvicornSuppressFilter())

View File

@ -0,0 +1,379 @@
import sys
import os
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith('darwin'):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "RVC")
sys.path.append(modulePath)
else:
sys.path.append("RVC")
print("RVC 3")
import io
from dataclasses import dataclass, asdict, field
from functools import reduce
import numpy as np
import torch
import onnxruntime
# onnxruntime.set_default_logger_severity(3)
from const import HUBERT_ONNX_MODEL_PATH
import pyworld as pw
from vc_infer_pipeline import VC
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from fairseq import checkpoint_utils
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@dataclass
class RVCSettings():
gpu: int = 0
dstId: int = 0
f0Detector: str = "dio" # dio or harvest
tran: int = 20
noiceScale: float = 0.3
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
clusterInferRatio: float = 0.1
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
speakers: dict[str, int] = field(
default_factory=lambda: {}
)
# ↓mutableな物だけ列挙
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
strData = ["framework", "f0Detector"]
class RVC:
def __init__(self, params):
self.settings = RVCSettings()
self.net_g = None
self.onnx_session = None
self.raw_path = io.BytesIO()
self.gpu_num = torch.cuda.device_count()
self.prevVol = 0
self.params = params
print("RVC initialization: ", params)
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
self.device = torch.device("cuda", index=self.settings.gpu)
self.settings.configFile = config
# self.hps = utils.get_hparams_from_file(config)
# self.settings.speakers = self.hps.spk
# hubert model
try:
# hubert_path = self.params["hubert"]
# useHubertOnnx = self.params["useHubertOnnx"]
# self.useHubertOnnx = useHubertOnnx
# if useHubertOnnx == True:
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
# self.hubert_onnx = onnxruntime.InferenceSession(
# HUBERT_ONNX_MODEL_PATH,
# providers=providers
# )
# else:
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
# [hubert_path],
# suffix="",
# )
# model = models[0]
# model.eval()
# self.hubert_model = model.cpu()
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="",)
model = models[0]
model.eval()
# model = model.half()
self.hubert_model = model
self.hubert_model = self.hubert_model.to(self.device)
except Exception as e:
print("EXCEPTION during loading hubert/contentvec model", e)
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
# PyTorchモデル生成
if pyTorch_model_file != None:
cpt = torch.load(pyTorch_model_file, map_location="cpu")
self.tgt_sr = cpt["config"][-1]
# n_spk = cpt["config"][-3]
is_half = False
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
net_g.eval()
net_g.load_state_dict(cpt["weight"], strict=False)
# net_g = net_g.half()
self.net_g = net_g
self.net_g = self.net_g.to(self.device)
# self.net_g = SynthesizerTrn(
# self.hps.data.filter_length // 2 + 1,
# self.hps.train.segment_size // self.hps.data.hop_length,
# **self.hps.model
# )
# self.net_g.eval()
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
# ONNXモデル生成
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model_file,
providers=providers
)
# input_info = self.onnx_session.get_inputs()
# for i in input_info:
# print("input", i)
# output_info = self.onnx_session.get_outputs()
# for i in output_info:
# print("output", i)
return self.get_info()
def update_setteings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
if hasattr(self, "hubert_onnx"):
self.hubert_onnx.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
if hasattr(self, "hubert_onnx"):
self.hubert_onnx.set_providers(providers=[val])
elif key == "onnxExecutionProvider" and self.onnx_session == None:
print("Onnx is not enabled. Please load model.")
return False
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
return self.tgt_sr
# return 24000
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
# import wave
# filename = "testc2.wav"
# if os.path.exists(filename):
# print("[IORecorder] delete old analyze file.", filename)
# os.remove(filename)
# fo = wave.open(filename, 'wb')
# fo.setnchannels(1)
# fo.setsampwidth(2)
# # fo.setframerate(24000)
# fo.setframerate(self.tgt_sr)
# fo.writeframes(newData.astype(np.int16))
# fo.close()
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
newData = newData.astype(np.float32) / 32768.0
if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
# if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
# convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
convertSize = convertSize + (128 - (convertSize % 128))
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
rms = np.sqrt(np.square(crop).mean(axis=0))
vol = max(rms, self.prevVol * 0.0)
self.prevVol = vol
import wave
filename = "testc2.wav"
if os.path.exists(filename):
print("[IORecorder] delete old analyze file.", filename)
os.remove(filename)
fo = wave.open(filename, 'wb')
fo.setnchannels(1)
fo.setsampwidth(2)
# fo.setframerate(24000)
fo.setframerate(self.tgt_sr)
fo.writeframes((self.audio_buffer * 32768.0).astype(np.int16))
fo.close()
return (self.audio_buffer, convertSize, vol)
def _onnx_inference(self, data):
pass
def _pyTorch_inference(self, data):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
audio = data[0]
convertSize = data[1]
vol = data[2]
# from scipy.io import wavfile
# # wavfile.write("testa.wav", self.tgt_sr, audio * 32768.0)
# wavfile.write("testa.wav", 24000, audio * 32768.0)
filename = "testc2.wav"
audio = load_audio(filename, 16000)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
is_half = False
with torch.no_grad():
vc = VC(self.tgt_sr, dev, is_half)
sid = 0
times = [0, 0, 0]
f0_up_key = 0
f0_method = "pm"
file_index = ""
file_big_npy = ""
index_rate = 1
if_f0 = 1
f0_file = None
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file)
result = audio_out
from scipy.io import wavfile
wavfile.write("testaaaaa.wav", self.tgt_sr, result)
return result
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def destroy(self):
del self.net_g
del self.onnx_session
# def resize_f0(x, target_len):
# source = np.array(x)
# source[source < 0.001] = np.nan
# target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
# res = np.nan_to_num(target)
# return res
# def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
# if p_len is None:
# p_len = wav_numpy.shape[0] // hop_length
# f0, t = pw.dio(
# wav_numpy.astype(np.double),
# fs=sampling_rate,
# f0_ceil=800,
# frame_period=1000 * hop_length / sampling_rate,
# )
# f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
# for index, pitch in enumerate(f0):
# f0[index] = round(pitch, 1)
# return resize_f0(f0, p_len)
# def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
# if p_len is None:
# p_len = wav_numpy.shape[0] // hop_length
# f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
# for index, pitch in enumerate(f0):
# f0[index] = round(pitch, 1)
# return resize_f0(f0, p_len)
# def get_hubert_content_layer9(hmodel, wav_16k_tensor):
# feats = wav_16k_tensor
# if feats.dim() == 2: # double channels
# feats = feats.mean(-1)
# assert feats.dim() == 1, feats.dim()
# feats = feats.view(1, -1)
# padding_mask = torch.BoolTensor(feats.shape).fill_(False)
# inputs = {
# "source": feats.to(wav_16k_tensor.device),
# "padding_mask": padding_mask.to(wav_16k_tensor.device),
# "output_layer": 9, # layer 9
# }
# with torch.no_grad():
# logits = hmodel.extract_features(**inputs)
# return logits[0].transpose(1, 2)
import ffmpeg
def load_audio(file, sr):
try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0

View File

@ -307,8 +307,6 @@ class SoVitsSvc40:
result = audio1 result = audio1
return result return result
pass
def _pyTorch_inference(self, data): def _pyTorch_inference(self, data):
if hasattr(self, "net_g") == False or self.net_g == None: if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.") print("[Voice Changer] No pyTorch session.")

View File

@ -49,23 +49,35 @@ class VoiceChanger():
self.modelType = getModelType() self.modelType = getModelType()
print("[VoiceChanger] activate model type:", self.modelType) print("[VoiceChanger] activate model type:", self.modelType)
print("RVC!!! 1")
if self.modelType == "MMVCv15": if self.modelType == "MMVCv15":
print("RVC!!! 2")
from voice_changer.MMVCv15.MMVCv15 import MMVCv15 from voice_changer.MMVCv15.MMVCv15 import MMVCv15
self.voiceChanger = MMVCv15() self.voiceChanger = MMVCv15()
elif self.modelType == "MMVCv13": elif self.modelType == "MMVCv13":
print("RVC!!! 2")
from voice_changer.MMVCv13.MMVCv13 import MMVCv13 from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13() self.voiceChanger = MMVCv13()
elif self.modelType == "so-vits-svc-40v2": elif self.modelType == "so-vits-svc-40v2":
print("RVC!!! 2")
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2 from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
self.voiceChanger = SoVitsSvc40v2(params) self.voiceChanger = SoVitsSvc40v2(params)
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c": elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
print("RVC!!! 2")
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40 from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
self.voiceChanger = SoVitsSvc40(params) self.voiceChanger = SoVitsSvc40(params)
elif self.modelType == "DDSP-SVC": elif self.modelType == "DDSP-SVC":
print("RVC!!! 2")
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
self.voiceChanger = DDSP_SVC(params) self.voiceChanger = DDSP_SVC(params)
elif self.modelType == "RVC":
print("RVC!!! 22222222222")
from voice_changer.RVC.RVC import RVC
print("RVC!!! 2")
self.voiceChanger = RVC(params)
else: else:
print("RVC!!! 3")
from voice_changer.MMVCv13.MMVCv13 import MMVCv13 from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13() self.voiceChanger = MMVCv13()
@ -166,7 +178,9 @@ class VoiceChanger():
if self.settings.inputSampleRate != processing_sampling_rate: if self.settings.inputSampleRate != processing_sampling_rate:
newData = resampy.resample(receivedData, self.settings.inputSampleRate, processing_sampling_rate) newData = resampy.resample(receivedData, self.settings.inputSampleRate, processing_sampling_rate)
print("resample", self.settings.inputSampleRate, processing_sampling_rate)
else: else:
print("not resample")
newData = receivedData newData = receivedData
# print("t1::::", t1.secs) # print("t1::::", t1.secs)
inputSize = newData.shape[0] inputSize = newData.shape[0]
@ -205,6 +219,11 @@ class VoiceChanger():
print_convert_processing( print_convert_processing(
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}") f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}") print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
print(
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
print(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
powered_cur = cur_overlap * self.np_cur_strength powered_cur = cur_overlap * self.np_cur_strength
powered_result = powered_prev + powered_cur powered_result = powered_prev + powered_cur