mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-03-14 20:03:59 +03:00
WIP: refactoring
This commit is contained in:
parent
6fcbd07065
commit
96d7141976
@ -1,6 +1,11 @@
|
|||||||
import sys
|
import sys
|
||||||
import os
|
import os
|
||||||
if sys.platform.startswith('darwin'):
|
from voice_changer.utils.LoadModelParams import LoadModelParams
|
||||||
|
|
||||||
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
||||||
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
||||||
|
|
||||||
|
if sys.platform.startswith("darwin"):
|
||||||
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
||||||
if len(baseDir) != 1:
|
if len(baseDir) != 1:
|
||||||
print("baseDir should be only one ", baseDir)
|
print("baseDir should be only one ", baseDir)
|
||||||
@ -10,24 +15,25 @@ if sys.platform.startswith('darwin'):
|
|||||||
else:
|
else:
|
||||||
sys.path.append("DDSP-SVC")
|
sys.path.append("DDSP-SVC")
|
||||||
|
|
||||||
import io
|
|
||||||
from dataclasses import dataclass, asdict, field
|
from dataclasses import dataclass, asdict, field
|
||||||
from functools import reduce
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import onnxruntime
|
import ddsp.vocoder as vo # type:ignore
|
||||||
import pyworld as pw
|
from ddsp.core import upsample # type:ignore
|
||||||
import ddsp.vocoder as vo
|
from enhancer import Enhancer # type:ignore
|
||||||
from ddsp.core import upsample
|
|
||||||
from enhancer import Enhancer
|
|
||||||
|
|
||||||
from Exceptions import NoModeLoadedException
|
from Exceptions import NoModeLoadedException
|
||||||
|
|
||||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
providers = [
|
||||||
|
"OpenVINOExecutionProvider",
|
||||||
|
"CUDAExecutionProvider",
|
||||||
|
"DmlExecutionProvider",
|
||||||
|
"CPUExecutionProvider",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class DDSP_SVCSettings():
|
class DDSP_SVCSettings:
|
||||||
gpu: int = 0
|
gpu: int = 0
|
||||||
dstId: int = 0
|
dstId: int = 0
|
||||||
|
|
||||||
@ -45,18 +51,26 @@ class DDSP_SVCSettings():
|
|||||||
onnxModelFile: str = ""
|
onnxModelFile: str = ""
|
||||||
configFile: str = ""
|
configFile: str = ""
|
||||||
|
|
||||||
speakers: dict[str, int] = field(
|
speakers: dict[str, int] = field(default_factory=lambda: {})
|
||||||
default_factory=lambda: {}
|
|
||||||
)
|
|
||||||
|
|
||||||
# ↓mutableな物だけ列挙
|
# ↓mutableな物だけ列挙
|
||||||
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize", "enableEnhancer", "enhancerTune"]
|
intData = [
|
||||||
|
"gpu",
|
||||||
|
"dstId",
|
||||||
|
"tran",
|
||||||
|
"predictF0",
|
||||||
|
"extraConvertSize",
|
||||||
|
"enableEnhancer",
|
||||||
|
"enhancerTune",
|
||||||
|
]
|
||||||
floatData = ["silentThreshold", "clusterInferRatio"]
|
floatData = ["silentThreshold", "clusterInferRatio"]
|
||||||
strData = ["framework", "f0Detector"]
|
strData = ["framework", "f0Detector"]
|
||||||
|
|
||||||
|
|
||||||
class DDSP_SVC:
|
class DDSP_SVC:
|
||||||
def __init__(self, params):
|
audio_buffer: AudioInOut | None = None
|
||||||
|
|
||||||
|
def __init__(self, params: VoiceChangerParams):
|
||||||
self.settings = DDSP_SVCSettings()
|
self.settings = DDSP_SVCSettings()
|
||||||
self.net_g = None
|
self.net_g = None
|
||||||
self.onnx_session = None
|
self.onnx_session = None
|
||||||
@ -72,24 +86,30 @@ class DDSP_SVC:
|
|||||||
else:
|
else:
|
||||||
return torch.device("cpu")
|
return torch.device("cpu")
|
||||||
|
|
||||||
def loadModel(self, props):
|
def loadModel(self, props: LoadModelParams):
|
||||||
# self.settings.configFile = props["files"]["configFilename"] # 同じフォルダにあるyamlを使う
|
self.settings.pyTorchModelFile = props.files.pyTorchModelFilename
|
||||||
self.settings.pyTorchModelFile = props["files"]["pyTorchModelFilename"]
|
|
||||||
# model
|
# model
|
||||||
model, args = vo.load_model(self.settings.pyTorchModelFile, device=self.useDevice())
|
model, args = vo.load_model(
|
||||||
|
self.settings.pyTorchModelFile, device=self.useDevice()
|
||||||
|
)
|
||||||
self.model = model
|
self.model = model
|
||||||
self.args = args
|
self.args = args
|
||||||
self.sampling_rate = args.data.sampling_rate
|
self.sampling_rate = args.data.sampling_rate
|
||||||
self.hop_size = int(self.args.data.block_size * self.sampling_rate / self.args.data.sampling_rate)
|
self.hop_size = int(
|
||||||
|
self.args.data.block_size
|
||||||
|
* self.sampling_rate
|
||||||
|
/ self.args.data.sampling_rate
|
||||||
|
)
|
||||||
|
|
||||||
# hubert
|
# hubert
|
||||||
self.vec_path = self.params["hubert_soft"]
|
self.vec_path = self.params.hubert_soft
|
||||||
self.encoder = vo.Units_Encoder(
|
self.encoder = vo.Units_Encoder(
|
||||||
self.args.data.encoder,
|
self.args.data.encoder,
|
||||||
self.vec_path,
|
self.vec_path,
|
||||||
self.args.data.encoder_sample_rate,
|
self.args.data.encoder_sample_rate,
|
||||||
self.args.data.encoder_hop_size,
|
self.args.data.encoder_hop_size,
|
||||||
device=self.useDevice())
|
device=self.useDevice(),
|
||||||
|
)
|
||||||
|
|
||||||
# ort_options = onnxruntime.SessionOptions()
|
# ort_options = onnxruntime.SessionOptions()
|
||||||
# ort_options.intra_op_num_threads = 8
|
# ort_options.intra_op_num_threads = 8
|
||||||
@ -111,36 +131,59 @@ class DDSP_SVC:
|
|||||||
self.sampling_rate,
|
self.sampling_rate,
|
||||||
self.hop_size,
|
self.hop_size,
|
||||||
float(50),
|
float(50),
|
||||||
float(1100))
|
float(1100),
|
||||||
|
)
|
||||||
|
|
||||||
self.volume_extractor = vo.Volume_Extractor(self.hop_size)
|
self.volume_extractor = vo.Volume_Extractor(self.hop_size)
|
||||||
self.enhancer_path = self.params["nsf_hifigan"]
|
self.enhancer_path = self.params.nsf_hifigan
|
||||||
self.enhancer = Enhancer(self.args.enhancer.type, self.enhancer_path, device=self.useDevice())
|
self.enhancer = Enhancer(
|
||||||
|
self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
|
||||||
|
)
|
||||||
return self.get_info()
|
return self.get_info()
|
||||||
|
|
||||||
def update_settings(self, key: str, val: any):
|
def update_settings(self, key: str, val: int | float | str):
|
||||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
if key == "onnxExecutionProvider" and self.onnx_session is not None:
|
||||||
if val == "CUDAExecutionProvider":
|
if val == "CUDAExecutionProvider":
|
||||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||||
self.settings.gpu = 0
|
self.settings.gpu = 0
|
||||||
provider_options = [{'device_id': self.settings.gpu}]
|
provider_options = [{"device_id": self.settings.gpu}]
|
||||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
self.onnx_session.set_providers(
|
||||||
|
providers=[val], provider_options=provider_options
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
self.onnx_session.set_providers(providers=[val])
|
self.onnx_session.set_providers(providers=[val])
|
||||||
elif key in self.settings.intData:
|
elif key in self.settings.intData:
|
||||||
setattr(self.settings, key, int(val))
|
val = int(val)
|
||||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
setattr(self.settings, key, val)
|
||||||
|
if (
|
||||||
|
key == "gpu"
|
||||||
|
and val >= 0
|
||||||
|
and val < self.gpu_num
|
||||||
|
and self.onnx_session is not None
|
||||||
|
):
|
||||||
providers = self.onnx_session.get_providers()
|
providers = self.onnx_session.get_providers()
|
||||||
print("Providers:", providers)
|
print("Providers:", providers)
|
||||||
if "CUDAExecutionProvider" in providers:
|
if "CUDAExecutionProvider" in providers:
|
||||||
provider_options = [{'device_id': self.settings.gpu}]
|
provider_options = [{"device_id": self.settings.gpu}]
|
||||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
self.onnx_session.set_providers(
|
||||||
|
providers=["CUDAExecutionProvider"],
|
||||||
|
provider_options=provider_options,
|
||||||
|
)
|
||||||
if key == "gpu" and len(self.settings.pyTorchModelFile) > 0:
|
if key == "gpu" and len(self.settings.pyTorchModelFile) > 0:
|
||||||
model, _args = vo.load_model(self.settings.pyTorchModelFile, device=self.useDevice())
|
model, _args = vo.load_model(
|
||||||
|
self.settings.pyTorchModelFile, device=self.useDevice()
|
||||||
|
)
|
||||||
self.model = model
|
self.model = model
|
||||||
self.enhancer = Enhancer(self.args.enhancer.type, self.enhancer_path, device=self.useDevice())
|
self.enhancer = Enhancer(
|
||||||
self.encoder = vo.Units_Encoder(self.args.data.encoder, self.vec_path, self.args.data.encoder_sample_rate,
|
self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
|
||||||
self.args.data.encoder_hop_size, device=self.useDevice())
|
)
|
||||||
|
self.encoder = vo.Units_Encoder(
|
||||||
|
self.args.data.encoder,
|
||||||
|
self.vec_path,
|
||||||
|
self.args.data.encoder_sample_rate,
|
||||||
|
self.args.data.encoder_hop_size,
|
||||||
|
device=self.useDevice(),
|
||||||
|
)
|
||||||
|
|
||||||
elif key in self.settings.floatData:
|
elif key in self.settings.floatData:
|
||||||
setattr(self.settings, key, float(val))
|
setattr(self.settings, key, float(val))
|
||||||
@ -151,16 +194,13 @@ class DDSP_SVC:
|
|||||||
if val == "dio":
|
if val == "dio":
|
||||||
val = "parselmouth"
|
val = "parselmouth"
|
||||||
|
|
||||||
if hasattr(self, "sampling_rate") == False:
|
if hasattr(self, "sampling_rate") is False:
|
||||||
self.sampling_rate = 44100
|
self.sampling_rate = 44100
|
||||||
self.hop_size = 512
|
self.hop_size = 512
|
||||||
|
|
||||||
self.f0_detector = vo.F0_Extractor(
|
self.f0_detector = vo.F0_Extractor(
|
||||||
val,
|
val, self.sampling_rate, self.hop_size, float(50), float(1100)
|
||||||
self.sampling_rate,
|
)
|
||||||
self.hop_size,
|
|
||||||
float(50),
|
|
||||||
float(1100))
|
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
@ -169,10 +209,12 @@ class DDSP_SVC:
|
|||||||
def get_info(self):
|
def get_info(self):
|
||||||
data = asdict(self.settings)
|
data = asdict(self.settings)
|
||||||
|
|
||||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
data["onnxExecutionProviders"] = (
|
||||||
|
self.onnx_session.get_providers() if self.onnx_session is not None else []
|
||||||
|
)
|
||||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||||
for f in files:
|
for f in files:
|
||||||
if data[f] != None and os.path.exists(data[f]):
|
if data[f] is not None and os.path.exists(data[f]):
|
||||||
data[f] = os.path.basename(data[f])
|
data[f] = os.path.basename(data[f])
|
||||||
else:
|
else:
|
||||||
data[f] = ""
|
data[f] = ""
|
||||||
@ -182,41 +224,64 @@ class DDSP_SVC:
|
|||||||
def get_processing_sampling_rate(self):
|
def get_processing_sampling_rate(self):
|
||||||
return self.sampling_rate
|
return self.sampling_rate
|
||||||
|
|
||||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0):
|
def generate_input(
|
||||||
|
self,
|
||||||
|
newData: AudioInOut,
|
||||||
|
inputSize: int,
|
||||||
|
crossfadeSize: int,
|
||||||
|
solaSearchFrame: int = 0,
|
||||||
|
):
|
||||||
newData = newData.astype(np.float32) / 32768.0
|
newData = newData.astype(np.float32) / 32768.0
|
||||||
|
|
||||||
if hasattr(self, "audio_buffer"):
|
if self.audio_buffer is not None:
|
||||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
self.audio_buffer = np.concatenate(
|
||||||
|
[self.audio_buffer, newData], 0
|
||||||
|
) # 過去のデータに連結
|
||||||
else:
|
else:
|
||||||
self.audio_buffer = newData
|
self.audio_buffer = newData
|
||||||
|
|
||||||
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
convertSize = (
|
||||||
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
||||||
|
)
|
||||||
|
|
||||||
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||||
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
||||||
|
|
||||||
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
convertOffset = -1 * convertSize
|
||||||
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
||||||
|
|
||||||
# f0
|
# f0
|
||||||
f0 = self.f0_detector.extract(self.audio_buffer * 32768.0, uv_interp=True,
|
f0 = self.f0_detector.extract(
|
||||||
silence_front=self.settings.extraConvertSize / self.sampling_rate)
|
self.audio_buffer * 32768.0,
|
||||||
|
uv_interp=True,
|
||||||
|
silence_front=self.settings.extraConvertSize / self.sampling_rate,
|
||||||
|
)
|
||||||
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
||||||
f0 = f0 * 2 ** (float(self.settings.tran) / 12)
|
f0 = f0 * 2 ** (float(self.settings.tran) / 12)
|
||||||
|
|
||||||
# volume, mask
|
# volume, mask
|
||||||
volume = self.volume_extractor.extract(self.audio_buffer)
|
volume = self.volume_extractor.extract(self.audio_buffer)
|
||||||
mask = (volume > 10 ** (float(-60) / 20)).astype('float')
|
mask = (volume > 10 ** (float(-60) / 20)).astype("float")
|
||||||
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
||||||
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
|
mask = np.array(
|
||||||
|
[np.max(mask[n : n + 9]) for n in range(len(mask) - 8)] # noqa: E203
|
||||||
|
)
|
||||||
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
||||||
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
||||||
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
||||||
|
|
||||||
# embed
|
# embed
|
||||||
audio = torch.from_numpy(self.audio_buffer).float().to(self.useDevice()).unsqueeze(0)
|
audio = (
|
||||||
|
torch.from_numpy(self.audio_buffer)
|
||||||
|
.float()
|
||||||
|
.to(self.useDevice())
|
||||||
|
.unsqueeze(0)
|
||||||
|
)
|
||||||
seg_units = self.encoder.encode(audio, self.sampling_rate, self.hop_size)
|
seg_units = self.encoder.encode(audio, self.sampling_rate, self.hop_size)
|
||||||
|
|
||||||
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
cropOffset = -1 * (inputSize + crossfadeSize)
|
||||||
|
cropEnd = -1 * (crossfadeSize)
|
||||||
|
crop = self.audio_buffer[cropOffset:cropEnd]
|
||||||
|
|
||||||
rms = np.sqrt(np.square(crop).mean(axis=0))
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
||||||
vol = max(rms, self.prevVol * 0.0)
|
vol = max(rms, self.prevVol * 0.0)
|
||||||
@ -225,15 +290,14 @@ class DDSP_SVC:
|
|||||||
return (seg_units, f0, volume, mask, convertSize, vol)
|
return (seg_units, f0, volume, mask, convertSize, vol)
|
||||||
|
|
||||||
def _onnx_inference(self, data):
|
def _onnx_inference(self, data):
|
||||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
|
||||||
print("[Voice Changer] No onnx session.")
|
print("[Voice Changer] No onnx session.")
|
||||||
raise NoModeLoadedException("ONNX")
|
raise NoModeLoadedException("ONNX")
|
||||||
|
|
||||||
raise NoModeLoadedException("ONNX")
|
raise NoModeLoadedException("ONNX")
|
||||||
|
|
||||||
def _pyTorch_inference(self, data):
|
def _pyTorch_inference(self, data):
|
||||||
|
if hasattr(self, "model") is False or self.model is None:
|
||||||
if hasattr(self, "model") == False or self.model == None:
|
|
||||||
print("[Voice Changer] No pyTorch session.")
|
print("[Voice Changer] No pyTorch session.")
|
||||||
raise NoModeLoadedException("pytorch")
|
raise NoModeLoadedException("pytorch")
|
||||||
|
|
||||||
@ -242,15 +306,19 @@ class DDSP_SVC:
|
|||||||
volume = data[2].to(self.useDevice())
|
volume = data[2].to(self.useDevice())
|
||||||
mask = data[3].to(self.useDevice())
|
mask = data[3].to(self.useDevice())
|
||||||
|
|
||||||
convertSize = data[4]
|
# convertSize = data[4]
|
||||||
vol = data[5]
|
# vol = data[5]
|
||||||
# if vol < self.settings.silentThreshold:
|
# if vol < self.settings.silentThreshold:
|
||||||
# print("threshold")
|
# print("threshold")
|
||||||
# return np.zeros(convertSize).astype(np.int16)
|
# return np.zeros(convertSize).astype(np.int16)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
spk_id = torch.LongTensor(np.array([[self.settings.dstId]])).to(self.useDevice())
|
spk_id = torch.LongTensor(np.array([[self.settings.dstId]])).to(
|
||||||
seg_output, _, (s_h, s_n) = self.model(c, f0, volume, spk_id=spk_id, spk_mix_dict=None)
|
self.useDevice()
|
||||||
|
)
|
||||||
|
seg_output, _, (s_h, s_n) = self.model(
|
||||||
|
c, f0, volume, spk_id=spk_id, spk_mix_dict=None
|
||||||
|
)
|
||||||
seg_output *= mask
|
seg_output *= mask
|
||||||
|
|
||||||
if self.settings.enableEnhancer:
|
if self.settings.enableEnhancer:
|
||||||
@ -260,8 +328,9 @@ class DDSP_SVC:
|
|||||||
f0,
|
f0,
|
||||||
self.args.data.block_size,
|
self.args.data.block_size,
|
||||||
# adaptive_key=float(self.settings.enhancerTune),
|
# adaptive_key=float(self.settings.enhancerTune),
|
||||||
adaptive_key='auto',
|
adaptive_key="auto",
|
||||||
silence_front=self.settings.extraConvertSize / self.sampling_rate)
|
silence_front=self.settings.extraConvertSize / self.sampling_rate,
|
||||||
|
)
|
||||||
|
|
||||||
result = seg_output.squeeze().cpu().numpy() * 32768.0
|
result = seg_output.squeeze().cpu().numpy() * 32768.0
|
||||||
return np.array(result).astype(np.int16)
|
return np.array(result).astype(np.int16)
|
||||||
@ -282,7 +351,7 @@ class DDSP_SVC:
|
|||||||
del self.onnx_session
|
del self.onnx_session
|
||||||
|
|
||||||
remove_path = os.path.join("DDSP-SVC")
|
remove_path = os.path.join("DDSP-SVC")
|
||||||
sys.path = [x for x in sys.path if x.endswith(remove_path) == False]
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
||||||
|
|
||||||
for key in list(sys.modules):
|
for key in list(sys.modules):
|
||||||
val = sys.modules.get(key)
|
val = sys.modules.get(key)
|
||||||
@ -291,5 +360,5 @@ class DDSP_SVC:
|
|||||||
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
|
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
|
||||||
print("remove", key, file_path)
|
print("remove", key, file_path)
|
||||||
sys.modules.pop(key)
|
sys.modules.pop(key)
|
||||||
except Exception as e:
|
except: # type:ignore
|
||||||
pass
|
pass
|
||||||
|
Loading…
x
Reference in New Issue
Block a user