diff --git a/SoftVcDemo.ipynb b/SoftVcDemo.ipynb index b4b8366e..d22b660a 100644 --- a/SoftVcDemo.ipynb +++ b/SoftVcDemo.ipynb @@ -46,7 +46,7 @@ ], "metadata": { "id": "cGXhQNzhrQxO", - "outputId": "19f8cd58-28ff-4e02-86fa-8a2484dabf6a", + "outputId": "94ff2bc1-605a-4e6a-b33b-705163892777", "colab": { "base_uri": "https://localhost:8080/" } @@ -57,7 +57,7 @@ "output_type": "stream", "name": "stdout", "text": [ - "Sun Sep 18 22:18:45 2022 \n", + "Sat Oct 29 00:50:05 2022 \n", "+-----------------------------------------------------------------------------+\n", "| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n", "|-------------------------------+----------------------+----------------------+\n", @@ -66,7 +66,7 @@ "| | | MIG M. |\n", "|===============================+======================+======================|\n", "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", - "| N/A 35C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |\n", + "| N/A 67C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |\n", "| | | N/A |\n", "+-------------------------------+----------------------+----------------------+\n", " \n", @@ -100,12 +100,12 @@ ], "metadata": { "id": "od54JTHBrysO", - "outputId": "267858d4-94f2-4606-e10c-d2b872248337", + "outputId": "82736831-751e-4e28-8c29-90c95e7b86b8", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 3, + "execution_count": 2, "outputs": [ { "output_type": "stream", @@ -113,32 +113,32 @@ "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting fastapi\n", - " Downloading fastapi-0.85.0-py3-none-any.whl (55 kB)\n", - "\u001b[K |████████████████████████████████| 55 kB 3.0 MB/s \n", - "\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.9.2)\n", - "Collecting starlette==0.20.4\n", + " Downloading fastapi-0.85.1-py3-none-any.whl (55 kB)\n", + "\u001b[K |████████████████████████████████| 55 kB 1.5 MB/s \n", + "\u001b[?25hCollecting starlette==0.20.4\n", " Downloading starlette-0.20.4-py3-none-any.whl (63 kB)\n", - "\u001b[K |████████████████████████████████| 63 kB 2.5 MB/s \n", - "\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n", + "\u001b[K |████████████████████████████████| 63 kB 1.3 MB/s \n", + "\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.10.2)\n", "Collecting anyio<5,>=3.4.0\n", - " Downloading anyio-3.6.1-py3-none-any.whl (80 kB)\n", - "\u001b[K |████████████████████████████████| 80 kB 10.8 MB/s \n", - "\u001b[?25hRequirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n", + " Downloading anyio-3.6.2-py3-none-any.whl (80 kB)\n", + "\u001b[K |████████████████████████████████| 80 kB 9.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n", "Collecting sniffio>=1.1\n", " Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n", + "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n", "Installing collected packages: sniffio, anyio, starlette, fastapi\n", - "Successfully installed anyio-3.6.1 fastapi-0.85.0 sniffio-1.3.0 starlette-0.20.4\n", + "Successfully installed anyio-3.6.2 fastapi-0.85.1 sniffio-1.3.0 starlette-0.20.4\n", "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting uvicorn\n", - " Downloading uvicorn-0.18.3-py3-none-any.whl (57 kB)\n", - "\u001b[K |████████████████████████████████| 57 kB 3.8 MB/s \n", + " Downloading uvicorn-0.19.0-py3-none-any.whl (56 kB)\n", + "\u001b[K |████████████████████████████████| 56 kB 5.0 MB/s \n", "\u001b[?25hCollecting h11>=0.8\n", - " Downloading h11-0.13.0-py3-none-any.whl (58 kB)\n", - "\u001b[K |████████████████████████████████| 58 kB 6.3 MB/s \n", - "\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n", - "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n", + " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", + "\u001b[K |████████████████████████████████| 58 kB 7.0 MB/s \n", + "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n", + "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n", "Installing collected packages: h11, uvicorn\n", - "Successfully installed h11-0.13.0 uvicorn-0.18.3\n" + "Successfully installed h11-0.14.0 uvicorn-0.19.0\n" ] } ] @@ -152,7 +152,7 @@ "metadata": { "id": "eCb2j68vsqxB" }, - "execution_count": 5, + "execution_count": 3, "outputs": [] }, { @@ -167,49 +167,49 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": { "id": "WO8XzrFMZGoj", "colab": { "base_uri": "https://localhost:8080/", "height": 324, "referenced_widgets": [ - "fad16a0235aa4e5bb2b8de5fcb183243", - "bc5c75fcb2e44548ab5aa978eeb9b8a6", - "62c8e5c4546c4c17ad4125ddb0907d63", - "52fed3e4db2747c2b70828a73073e909", - "0fc41e46c8fa4853b88a2af2345be149", - "ea2165bce13c4823bf8d9d77d4b63f49", - "8b51c58c91d3418c8d6dc619af78dafa", - "2f511db422d5487fab18d16a8b61b585", - "4c8d6b8d405e4ecf841ff782fd7a34cb", - "96954daa268a471cabedd434935aac23", - "de6bcd48cc164bcd99825a250b70cb53", - "0239844e12e64b9981e9e78dcf57d0ef", - "2bf83e0402c2485b998b35ef783b3548", - "f83daf5b13204f0a9b9dc1ee0271e6b0", - "6d46c9a7d2714add9164ba6487739b57", - "a7cf75ed1bd94a238253fa071d5b3150", - "a50e5de44a474d6c863258fbd14d0401", - "c82e786218ed47ab80ae5173b690fffe", - "28f5c855824b4a0eb899b196a2356b45", - "7956a1d6392b4b6fab81e098e54dfefc", - "19a1448c941249eb81d0d9bcdb3c6739", - "6f41807bbd764265879de3b83d247ad4", - "1b89d116460746cb90858d77ff65cffa", - "6d7b8dd5f7cc41329cfc590141f3927a", - "878fc80433d84cb98b607629c8fecf08", - "cc841ac2ac954db78989389970890582", - "bb701d96133442c6b3aa70ddc585d01c", - "e38d4376820c40de97d97c78b119cd4f", - "59323fae26814e03bad57866d75b76f1", - "b5b11bfc014c4a76a421012fb096e8e5", - "5da63d520023436aa71101b5561a5744", - "3040cd18ddae4853801274c3f10d17b0", - "e533525617774461991000eb56899c0b" + "448ffee4cfcc46e9901407ff874e66da", + "14622f0216234751b0a41166ef25b3f2", + "5c634bbb4dc14d6694857bce8ac36f26", + "b1719d7b5c1c48cd985cf572835ad40a", + "3a614c1ca4c543589a4123c993ec3216", + "95bbbbf55a584c9388c59bbf46a17413", + "b2a710c0a5794c3c99a12dc883650f9e", + "f33a6781e368450785d64b611e893b7e", + "7cbcfefdd5bc4c278848a18744f48055", + "6c89e189d73c4b87ac7943705f4c1178", + "459cef048dde4730bffc4468d67f54e6", + "fee6169deac949fbbb133dc68fd2e932", + "f82aecbc83dd4ba5b4e6a1ba7b6bfddd", + "7d25f1e877ec48718a5ec8a136ef8f57", + "a73ad267948e48c58e5d68da0de03e0b", + "b1110b3fa84c4303ad9c14d97fd55800", + "6f2b4a40cb1a435e91f47ac47fce26d5", + "47a80ad9100546269c5d08a484fe645b", + "79d09615198c49fb9d874c7b4f61cb69", + "95a17dff28144876b3cbee3658b72fdb", + "942c168f8d9c40ae9ca0b7735f4511a8", + "8c959e29f913426786a594c2ef933fa8", + "efc33a54c86a4ce295d5c36868f033e5", + "7e237c94a5fa4a5a8858a35dc011f58c", + "1b3d4fbf170c491e97c2bb844ffa57ac", + "951dc9b591f744f1b7275182f5869d17", + "a05b7db42e1c4b3db5d908f46a8dbc9a", + "9260115f89f0496d81dabaad29b590e1", + "61ba6c17718b42a3a79c10eadc8ad430", + "55cdbdf3963e40a3b580b4dd4ef8bcbd", + "e1ef61fb615a41f5b73ee4a19572a3ab", + "fef62009c9754424913be4ff0cb2d77b", + "81bf1264af4d4b819a36f1d21cde5afe" ] }, - "outputId": "acd54070-6987-466f-d3ae-11f1ae22fbad" + "outputId": "d494a045-1455-4e54-9618-0bc9041d7c4f" }, "outputs": [ { @@ -231,7 +231,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "fad16a0235aa4e5bb2b8de5fcb183243" + "model_id": "448ffee4cfcc46e9901407ff874e66da" } }, "metadata": {} @@ -255,7 +255,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "0239844e12e64b9981e9e78dcf57d0ef" + "model_id": "fee6169deac949fbbb133dc68fd2e932" } }, "metadata": {} @@ -277,7 +277,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "1b89d116460746cb90858d77ff65cffa" + "model_id": "efc33a54c86a4ce295d5c36868f033e5" } }, "metadata": {} @@ -308,13 +308,13 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lzo_ZWmAjaby", - "outputId": "425649e6-8c52-4142-869f-079d99bf958c" + "outputId": "91b98713-b045-4acc-a51f-421ca16565a8" }, "outputs": [ { @@ -322,28 +322,38 @@ "name": "stdout", "text": [ "Cloning into 'voice-changer'...\n", - "remote: Enumerating objects: 101, done.\u001b[K\n", - "remote: Counting objects: 100% (101/101), done.\u001b[K\n", - "remote: Compressing objects: 100% (87/87), done.\u001b[K\n", - "remote: Total 101 (delta 12), reused 70 (delta 6), pack-reused 0\u001b[K\n", - "Receiving objects: 100% (101/101), 18.97 MiB | 21.06 MiB/s, done.\n", - "Resolving deltas: 100% (12/12), done.\n", + "remote: Enumerating objects: 81, done.\u001b[K\n", + "remote: Counting objects: 100% (81/81), done.\u001b[K\n", + "remote: Compressing objects: 100% (68/68), done.\u001b[K\n", + "remote: Total 81 (delta 12), reused 51 (delta 5), pack-reused 0\u001b[K\n", + "Unpacking objects: 100% (81/81), done.\n", + "Note: checking out 'f8823cb7e2025f13227f5918408cceda224bf9f0'.\n", + "\n", + "You are in 'detached HEAD' state. You can look around, make experimental\n", + "changes and commit them, and you can discard any commits you make in this\n", + "state without impacting any branches by performing another checkout.\n", + "\n", + "If you want to create a new branch to retain commits you create, you may\n", + "do so (now or later) by using -b with the checkout command again. Example:\n", + "\n", + " git checkout -b \n", + "\n", "/content/voice-changer/demo\n" ] } ], "source": [ "# (4-1) Clone Repository\n", - "!git clone --depth 1 https://github.com/w-okada/voice-changer.git\n", + "!git clone --depth 1 https://github.com/w-okada/voice-changer.git -b ver_1.0\n", "%cd voice-changer/demo/" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": { "id": "8-z9j4e_j-Wb", - "outputId": "a4855bb5-15d6-44f6-9201-8a78ea2f2309", + "outputId": "e7cd3270-42dd-4f6c-912c-cdb0718c04cf", "colab": { "base_uri": "https://localhost:8080/" } @@ -416,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": { "id": "-iPiSzvAepCl" }, @@ -429,13 +439,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IiWSwDjQidc7", - "outputId": "aab57f3f-45b5-4d67-ea9c-d522178c0560" + "outputId": "7611ea92-4841-4c53-f727-e950c0a2cf20" }, "outputs": [ { @@ -447,7 +457,7 @@ "Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n", "INFO: Will watch for changes in these directories: ['/content/voice-changer/demo']\n", "INFO: Uvicorn running on http://0.0.0.0:8092 (Press CTRL+C to quit)\n", - "INFO: Started reloader process [281] using StatReload\n", + "INFO: Started reloader process [209] using StatReload\n", "ENV: colab\n", "Removing weight norm...\n", "Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n", @@ -456,7 +466,7 @@ "Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n", "Using cache found in /root/.cache/torch/hub/bshall_acoustic-model_main\n", "Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n", - "INFO: Started server process [290]\n", + "INFO: Started server process [218]\n", "INFO: Waiting for application startup.\n", "INFO: Application startup complete.\n" ] @@ -490,19 +500,19 @@ ], "metadata": { "id": "H8EpnHqDjknR", - "outputId": "5a6611f0-fd18-4139-cbd9-85fc58401293", + "outputId": "b0db9b8a-cc92-4d88-9913-055362b20a9d", "colab": { "base_uri": "https://localhost:8080/", "height": 34 } }, - "execution_count": 13, + "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "https://ayh2m6j6xsd-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n" + "https://zbz8418h3es-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n" ] } ] @@ -522,7 +532,7 @@ "colab": { "collapsed_sections": [], "provenance": [], - "authorship_tag": "ABX9TyPr96AMaFVFBXjmM/2mCqZO", + "authorship_tag": "ABX9TyNIoYdRE9rtKaA9+L9JwdPZ", "include_colab_link": true }, "gpuClass": "standard", @@ -535,7 +545,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "fad16a0235aa4e5bb2b8de5fcb183243": { + "448ffee4cfcc46e9901407ff874e66da": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -550,14 +560,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bc5c75fcb2e44548ab5aa978eeb9b8a6", - "IPY_MODEL_62c8e5c4546c4c17ad4125ddb0907d63", - "IPY_MODEL_52fed3e4db2747c2b70828a73073e909" + "IPY_MODEL_14622f0216234751b0a41166ef25b3f2", + "IPY_MODEL_5c634bbb4dc14d6694857bce8ac36f26", + "IPY_MODEL_b1719d7b5c1c48cd985cf572835ad40a" ], - "layout": "IPY_MODEL_0fc41e46c8fa4853b88a2af2345be149" + "layout": "IPY_MODEL_3a614c1ca4c543589a4123c993ec3216" } }, - "bc5c75fcb2e44548ab5aa978eeb9b8a6": { + "14622f0216234751b0a41166ef25b3f2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -572,13 +582,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ea2165bce13c4823bf8d9d77d4b63f49", + "layout": "IPY_MODEL_95bbbbf55a584c9388c59bbf46a17413", "placeholder": "​", - "style": "IPY_MODEL_8b51c58c91d3418c8d6dc619af78dafa", + "style": "IPY_MODEL_b2a710c0a5794c3c99a12dc883650f9e", "value": "100%" } }, - "62c8e5c4546c4c17ad4125ddb0907d63": { + "5c634bbb4dc14d6694857bce8ac36f26": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -594,15 +604,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2f511db422d5487fab18d16a8b61b585", + "layout": "IPY_MODEL_f33a6781e368450785d64b611e893b7e", "max": 378435957, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_4c8d6b8d405e4ecf841ff782fd7a34cb", + "style": "IPY_MODEL_7cbcfefdd5bc4c278848a18744f48055", "value": 378435957 } }, - "52fed3e4db2747c2b70828a73073e909": { + "b1719d7b5c1c48cd985cf572835ad40a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -617,13 +627,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_96954daa268a471cabedd434935aac23", + "layout": "IPY_MODEL_6c89e189d73c4b87ac7943705f4c1178", "placeholder": "​", - "style": "IPY_MODEL_de6bcd48cc164bcd99825a250b70cb53", - "value": " 361M/361M [00:25<00:00, 7.62MB/s]" + "style": "IPY_MODEL_459cef048dde4730bffc4468d67f54e6", + "value": " 361M/361M [01:38<00:00, 4.48MB/s]" } }, - "0fc41e46c8fa4853b88a2af2345be149": { + "3a614c1ca4c543589a4123c993ec3216": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -675,7 +685,7 @@ "width": null } }, - "ea2165bce13c4823bf8d9d77d4b63f49": { + "95bbbbf55a584c9388c59bbf46a17413": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -727,7 +737,7 @@ "width": null } }, - "8b51c58c91d3418c8d6dc619af78dafa": { + "b2a710c0a5794c3c99a12dc883650f9e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -742,7 +752,7 @@ "description_width": "" } }, - "2f511db422d5487fab18d16a8b61b585": { + "f33a6781e368450785d64b611e893b7e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -794,7 +804,7 @@ "width": null } }, - "4c8d6b8d405e4ecf841ff782fd7a34cb": { + "7cbcfefdd5bc4c278848a18744f48055": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -810,7 +820,7 @@ "description_width": "" } }, - "96954daa268a471cabedd434935aac23": { + "6c89e189d73c4b87ac7943705f4c1178": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -862,7 +872,7 @@ "width": null } }, - "de6bcd48cc164bcd99825a250b70cb53": { + "459cef048dde4730bffc4468d67f54e6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -877,7 +887,7 @@ "description_width": "" } }, - "0239844e12e64b9981e9e78dcf57d0ef": { + "fee6169deac949fbbb133dc68fd2e932": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -892,14 +902,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2bf83e0402c2485b998b35ef783b3548", - "IPY_MODEL_f83daf5b13204f0a9b9dc1ee0271e6b0", - "IPY_MODEL_6d46c9a7d2714add9164ba6487739b57" + "IPY_MODEL_f82aecbc83dd4ba5b4e6a1ba7b6bfddd", + "IPY_MODEL_7d25f1e877ec48718a5ec8a136ef8f57", + "IPY_MODEL_a73ad267948e48c58e5d68da0de03e0b" ], - "layout": "IPY_MODEL_a7cf75ed1bd94a238253fa071d5b3150" + "layout": "IPY_MODEL_b1110b3fa84c4303ad9c14d97fd55800" } }, - "2bf83e0402c2485b998b35ef783b3548": { + "f82aecbc83dd4ba5b4e6a1ba7b6bfddd": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -914,13 +924,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a50e5de44a474d6c863258fbd14d0401", + "layout": "IPY_MODEL_6f2b4a40cb1a435e91f47ac47fce26d5", "placeholder": "​", - "style": "IPY_MODEL_c82e786218ed47ab80ae5173b690fffe", + "style": "IPY_MODEL_47a80ad9100546269c5d08a484fe645b", "value": "100%" } }, - "f83daf5b13204f0a9b9dc1ee0271e6b0": { + "7d25f1e877ec48718a5ec8a136ef8f57": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -936,15 +946,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_28f5c855824b4a0eb899b196a2356b45", + "layout": "IPY_MODEL_79d09615198c49fb9d874c7b4f61cb69", "max": 75329769, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7956a1d6392b4b6fab81e098e54dfefc", + "style": "IPY_MODEL_95a17dff28144876b3cbee3658b72fdb", "value": 75329769 } }, - "6d46c9a7d2714add9164ba6487739b57": { + "a73ad267948e48c58e5d68da0de03e0b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -959,13 +969,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_19a1448c941249eb81d0d9bcdb3c6739", + "layout": "IPY_MODEL_942c168f8d9c40ae9ca0b7735f4511a8", "placeholder": "​", - "style": "IPY_MODEL_6f41807bbd764265879de3b83d247ad4", - "value": " 71.8M/71.8M [00:02<00:00, 34.0MB/s]" + "style": "IPY_MODEL_8c959e29f913426786a594c2ef933fa8", + "value": " 71.8M/71.8M [00:23<00:00, 3.72MB/s]" } }, - "a7cf75ed1bd94a238253fa071d5b3150": { + "b1110b3fa84c4303ad9c14d97fd55800": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1017,7 +1027,7 @@ "width": null } }, - "a50e5de44a474d6c863258fbd14d0401": { + "6f2b4a40cb1a435e91f47ac47fce26d5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1069,7 +1079,7 @@ "width": null } }, - "c82e786218ed47ab80ae5173b690fffe": { + "47a80ad9100546269c5d08a484fe645b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1084,7 +1094,7 @@ "description_width": "" } }, - "28f5c855824b4a0eb899b196a2356b45": { + "79d09615198c49fb9d874c7b4f61cb69": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1136,7 +1146,7 @@ "width": null } }, - "7956a1d6392b4b6fab81e098e54dfefc": { + "95a17dff28144876b3cbee3658b72fdb": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1152,7 +1162,7 @@ "description_width": "" } }, - "19a1448c941249eb81d0d9bcdb3c6739": { + "942c168f8d9c40ae9ca0b7735f4511a8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1204,7 +1214,7 @@ "width": null } }, - "6f41807bbd764265879de3b83d247ad4": { + "8c959e29f913426786a594c2ef933fa8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1219,7 +1229,7 @@ "description_width": "" } }, - "1b89d116460746cb90858d77ff65cffa": { + "efc33a54c86a4ce295d5c36868f033e5": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1234,14 +1244,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d7b8dd5f7cc41329cfc590141f3927a", - "IPY_MODEL_878fc80433d84cb98b607629c8fecf08", - "IPY_MODEL_cc841ac2ac954db78989389970890582" + "IPY_MODEL_7e237c94a5fa4a5a8858a35dc011f58c", + "IPY_MODEL_1b3d4fbf170c491e97c2bb844ffa57ac", + "IPY_MODEL_951dc9b591f744f1b7275182f5869d17" ], - "layout": "IPY_MODEL_bb701d96133442c6b3aa70ddc585d01c" + "layout": "IPY_MODEL_a05b7db42e1c4b3db5d908f46a8dbc9a" } }, - "6d7b8dd5f7cc41329cfc590141f3927a": { + "7e237c94a5fa4a5a8858a35dc011f58c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1256,13 +1266,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e38d4376820c40de97d97c78b119cd4f", + "layout": "IPY_MODEL_9260115f89f0496d81dabaad29b590e1", "placeholder": "​", - "style": "IPY_MODEL_59323fae26814e03bad57866d75b76f1", + "style": "IPY_MODEL_61ba6c17718b42a3a79c10eadc8ad430", "value": "100%" } }, - "878fc80433d84cb98b607629c8fecf08": { + "1b3d4fbf170c491e97c2bb844ffa57ac": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1278,15 +1288,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b5b11bfc014c4a76a421012fb096e8e5", + "layout": "IPY_MODEL_55cdbdf3963e40a3b580b4dd4ef8bcbd", "max": 57562349, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5da63d520023436aa71101b5561a5744", + "style": "IPY_MODEL_e1ef61fb615a41f5b73ee4a19572a3ab", "value": 57562349 } }, - "cc841ac2ac954db78989389970890582": { + "951dc9b591f744f1b7275182f5869d17": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1301,13 +1311,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3040cd18ddae4853801274c3f10d17b0", + "layout": "IPY_MODEL_fef62009c9754424913be4ff0cb2d77b", "placeholder": "​", - "style": "IPY_MODEL_e533525617774461991000eb56899c0b", - "value": " 54.9M/54.9M [00:02<00:00, 19.4MB/s]" + "style": "IPY_MODEL_81bf1264af4d4b819a36f1d21cde5afe", + "value": " 54.9M/54.9M [00:08<00:00, 6.16MB/s]" } }, - "bb701d96133442c6b3aa70ddc585d01c": { + "a05b7db42e1c4b3db5d908f46a8dbc9a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1359,7 +1369,7 @@ "width": null } }, - "e38d4376820c40de97d97c78b119cd4f": { + "9260115f89f0496d81dabaad29b590e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1411,7 +1421,7 @@ "width": null } }, - "59323fae26814e03bad57866d75b76f1": { + "61ba6c17718b42a3a79c10eadc8ad430": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1426,7 +1436,7 @@ "description_width": "" } }, - "b5b11bfc014c4a76a421012fb096e8e5": { + "55cdbdf3963e40a3b580b4dd4ef8bcbd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1478,7 +1488,7 @@ "width": null } }, - "5da63d520023436aa71101b5561a5744": { + "e1ef61fb615a41f5b73ee4a19572a3ab": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1494,7 +1504,7 @@ "description_width": "" } }, - "3040cd18ddae4853801274c3f10d17b0": { + "fef62009c9754424913be4ff0cb2d77b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1546,7 +1556,7 @@ "width": null } }, - "e533525617774461991000eb56899c0b": { + "81bf1264af4d4b819a36f1d21cde5afe": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",