new version of colab

This commit is contained in:
Rafa 2023-09-03 20:44:22 -03:00 committed by GitHub
parent e736bcbbda
commit 9e8ba81379
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,6 @@
{
"cells": [
{
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
@ -16,35 +16,40 @@
"id": "Lbbmx_Vjl0zo"
},
"source": [
"Realtime Voice Changer by w-okada\n",
"### w-okada's Voice Changer | **Google Colab**\n",
"\n",
"---\n",
"\n",
"This is a attempt to run [Realtime Voice Changer](https://github.com/w-okada/voice-changer) on Google Colab.\\\n",
"Colab File updated by [rafacasari](https://github.com/Rafacasari)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vV1t7PBRm-o6"
},
"outputs": [],
"source": [
"# @title **Always use Colab GPU!**\n",
"# @markdown **A GPU can be used for faster processing.**\\\n",
"# @markdown You can check the Colab GPU running this cell.\\\n",
"# @markdown or use the menu **Runtime** -> **Change runtime** -> **Hardware acceleration** to select a GPU, if needed.\n",
"!nvidia-smi"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aLypf-RLIK-w"
},
"source": [
"##**READ ME - VERY IMPORTANT**\n",
"\n",
"This is an attempt to run [Realtime Voice Changer](https://github.com/w-okada/voice-changer) on Google Colab, still not perfect but is totally usable, you can use the following settings for better results:\n",
"\n",
"If you're using a index: `f0: RMVPE_ONNX | Chunk: 112 or higher | Extra: 8192`\\\n",
"If you're not using a index: `f0: RMVPE_ONNX | Chunk: 96 or higher | Extra: 16384`\\\n",
"**Don't forget to select your Colab GPU in the GPU field (<b>Tesla T4</b>, for free users)*\n",
"> Seems that PTH models performance better than ONNX for now, you can still try ONNX models and see if it satisfies you\n",
"\n",
"\n",
"*You can always [click here](https://github.com/YunaOneeChan/Voice-Changer-Settings) to check if these settings are up-to-date*\n",
"<br><br>\n",
"\n",
"---\n",
"\n",
"###Always use Colab GPU (**VERY VERY VERY IMPORTANT!**)\n",
"You need to use a Colab GPU so the Voice Changer can work faster and better\\\n",
"Use the menu above and click on **Runtime** » **Change runtime** » **Hardware acceleration** to select a GPU (**T4 is the free one**)\n",
"\n",
"---\n",
"\n",
"<br>\n",
"\n",
"# **Credits and Support**\n",
"Realtime Voice Changer by [w-okada](https://github.com/w-okada)\\\n",
"Colab files updated by [rafacasari](https://github.com/Rafacasari)\\\n",
"Recommended settings by [YunaOneeChan](https://github.com/YunaOneeChan)\n",
"\n",
"Need help? [AI Hub Discord](https://discord.gg/aihub) » ***#help-realtime-vc***\n",
"\n",
"---"
]
},
@ -57,9 +62,8 @@
},
"outputs": [],
"source": [
"# @title **[Optional]** Setup/Start Google Drive\n",
"# @markdown Using Google Drive can improve load times, since you will not need to re-download every time you use this.\n",
"\n",
"# @title **[Optional]** Connect to Google Drive\n",
"# @markdown Using Google Drive can improve load times a bit and your models will be stored, so you don't need to re-upload every time that you use.\n",
"import os\n",
"from google.colab import drive\n",
"\n",
@ -73,31 +77,18 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "86wTFmqsNMnD"
"id": "86wTFmqsNMnD",
"cellView": "form"
},
"outputs": [],
"source": [
"# @title **[1]** Clone the repository\n",
"# @markdown Clone the repository using this cell, this process should be really fast.\n",
"# @title **[1]** Clone repository and install dependencies\n",
"# @markdown This first step will download the latest version of Voice Changer and install the dependencies. **It will take around 2 minutes to complete.**\n",
"\n",
"!git clone --depth 1 https://github.com/w-okada/voice-changer.git &> /dev/null\n",
"\n",
"%cd voice-changer/server/\n",
"print(\"\\033[92mSuccessfully cloned the repository, proceed to the next cell!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "LwZAAuqxX7yY"
},
"outputs": [],
"source": [
"# @title **[2]** Install Modules\n",
"# @markdown This cell can take a few minutes to run.\n",
"print(\"\\033[92mSuccessfully cloned the repository\")\n",
"\n",
"!apt-get install libportaudio2 &> /dev/null\n",
"!pip install onnxruntime-gpu uvicorn faiss-gpu fairseq jedi google-colab moviepy decorator==4.4.2 sounddevice numpy==1.23.5 pyngrok --quiet\n",
@ -108,23 +99,6 @@
"print(\"\\033[92mSuccessfully installed all packages!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "lQxvqDH2D1MK"
},
"outputs": [],
"source": [
"# @title **[3]** Setup ngrok account\n",
"# @markdown Setup a free account at [Ngrok](https://dashboard.ngrok.com/signup), then click [this link](https://dashboard.ngrok.com/get-started/your-authtoken) to get your auth token, copy it and place it here:\n",
"\n",
"NgrokToken = '' # @param {type:\"string\"}\n",
"\n",
"!ngrok config add-authtoken {NgrokToken}"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -134,22 +108,114 @@
},
"outputs": [],
"source": [
"# @title **[4]** Start Server\n",
"# @markdown **Run this cell AFTER ngrok setup!**\\\n",
"# @markdown This cell will start the server, the first time that you run it will download the example models, so it can take a while and console may be spammed a little bit. **So be fast to open the server link.**\n",
"import portpicker\n",
"# @title **[2]** Start Server **using ngrok** (Recommended | **need a ngrok account**)\n",
"# @markdown This cell will start the server, the first time that you run it will download the models, so it can take a while (~1-2 minutes)\n",
"\n",
"# @markdown ---\n",
"# @markdown You'll need a ngrok account, but **it's free**!\n",
"# @markdown ---\n",
"# @markdown **1** - Create a **free** account at [ngrok](https://dashboard.ngrok.com/signup)\\\n",
"# @markdown **2** - If you didn't logged in with Google or Github, you will need to **verify your e-mail**!\\\n",
"# @markdown **3** - Click [this link](https://dashboard.ngrok.com/get-started/your-authtoken) to get your auth token, copy it and place it here:\n",
"from pyngrok import conf, ngrok\n",
"\n",
"Token = '' # @param {type:\"string\"}\n",
"# @markdown **4** - Still need further tests, but maybe region can help a bit on latency?\\\n",
"# @markdown `Default Region: us - United States (Ohio)`\n",
"Region = \"us - United States (Ohio)\" # @param [\"ap - Asia/Pacific (Singapore)\", \"au - Australia (Sydney)\",\"eu - Europe (Frankfurt)\", \"in - India (Mumbai)\",\"jp - Japan (Tokyo)\",\"sa - South America (Sao Paulo)\", \"us - United States (Ohio)\"]\n",
"\n",
"MyConfig = conf.PyngrokConfig()\n",
"\n",
"MyConfig.auth_token = Token\n",
"MyConfig.region = Region[0:2]\n",
"\n",
"conf.get_default().authtoken = Token\n",
"conf.get_default().region = Region[0:2]\n",
"\n",
"conf.set_default(MyConfig);\n",
"\n",
"# @markdown ---\n",
"# @markdown If you want to automatically clear the output when the server loads, check this option.\n",
"Clear_Output = True # @param {type:\"boolean\"}\n",
"\n",
"import portpicker, subprocess, threading, time, socket, urllib.request\n",
"PORT = portpicker.pick_unused_port()\n",
"\n",
"from IPython.display import clear_output, Javascript\n",
"\n",
"from pyngrok import ngrok\n",
"public_url = ngrok.connect(PORT).public_url\n",
"ngrokConnection = ngrok.connect(PORT)\n",
"public_url = ngrokConnection.public_url\n",
"\n",
"def iframe_thread(port):\n",
" while True:\n",
" time.sleep(0.5)\n",
" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n",
" result = sock.connect_ex(('127.0.0.1', port))\n",
" if result == 0:\n",
" break\n",
" sock.close()\n",
" clear_output()\n",
" print(\"------- SERVER READY! -------\")\n",
" print(\"Your server is available at:\")\n",
" print(public_url)\n",
" print(\"-----------------------------\")\n",
" display(Javascript('window.open(\"{url}\", \\'_blank\\');'.format(url=public_url)))\n",
"\n",
"threading.Thread(target=iframe_thread, daemon=True, args=(PORT,)).start()\n",
"\n",
"!python3 MMVCServerSIO.py \\\n",
" -p {PORT} \\\n",
" --https False \\\n",
" --content_vec_500 pretrain/checkpoint_best_legacy_500.pt \\\n",
" --content_vec_500_onnx pretrain/content_vec_500.onnx \\\n",
" --content_vec_500_onnx_on true \\\n",
" --hubert_base pretrain/hubert_base.pt \\\n",
" --hubert_base_jp pretrain/rinna_hubert_base_jp.pt \\\n",
" --hubert_soft pretrain/hubert/hubert-soft-0d54a1f4.pt \\\n",
" --nsf_hifigan pretrain/nsf_hifigan/model \\\n",
" --crepe_onnx_full pretrain/crepe_onnx_full.onnx \\\n",
" --crepe_onnx_tiny pretrain/crepe_onnx_tiny.onnx \\\n",
" --rmvpe pretrain/rmvpe.pt \\\n",
" --model_dir model_dir \\\n",
" --samples samples.json"
]
},
{
"cell_type": "code",
"source": [
"# @title **[Optional]** Start Server **using localtunnel** (ngrok alternative | no account needed)\n",
"# @markdown This cell will start the server, the first time that you run it will download the models, so it can take a while (~1-2 minutes)\n",
"\n",
"# @markdown ---\n",
"!npm config set update-notifier false\n",
"!npm install -g localtunnel\n",
"print(\"\\033[92mLocalTunnel installed!\")\n",
"# @markdown If you want to automatically clear the output when the server loads, check this option.\n",
"Clear_Output = True # @param {type:\"boolean\"}\n",
"\n",
"import portpicker, subprocess, threading, time, socket, urllib.request\n",
"PORT = portpicker.pick_unused_port()\n",
"\n",
"from IPython.display import clear_output, Javascript\n",
"\n",
"def iframe_thread(port):\n",
" while True:\n",
" time.sleep(0.5)\n",
" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n",
" result = sock.connect_ex(('127.0.0.1', port))\n",
" if result == 0:\n",
" break\n",
" sock.close()\n",
" clear_output()\n",
" print(\"Use the following endpoint to connect to localtunnel:\", urllib.request.urlopen('https://ipv4.icanhazip.com').read().decode('utf8').strip(\"\\n\"))\n",
" p = subprocess.Popen([\"lt\", \"--port\", \"{}\".format(port)], stdout=subprocess.PIPE)\n",
" for line in p.stdout:\n",
" print(line.decode(), end='')\n",
"\n",
"threading.Thread(target=iframe_thread, daemon=True, args=(PORT,)).start()\n",
"\n",
"print(\"Your server will be available at:\")\n",
"print(public_url)\n",
"print(public_url)\n",
"print(public_url)\n",
"print(\"Starting the server in 3 seconds\")\n",
"\n",
"!sleep 3\n",
"!python3 MMVCServerSIO.py \\\n",
" -p {PORT} \\\n",
" --https False \\\n",
@ -166,24 +232,88 @@
" --model_dir model_dir \\\n",
" --samples samples.json \\\n",
" --colab True"
]
],
"metadata": {
"cellView": "form",
"id": "ZwZaCf4BeZi2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# In Development | **Need contributors**"
],
"metadata": {
"id": "iuf9pBHYpTn-"
}
},
{
"cell_type": "code",
"source": [
"# @title **[BROKEN]** Start Server using Colab Tunnels (trying to fix this TwT)\n",
"# @markdown **Issue:** Everything starts correctly, but when you try to use the client, you'll see in your browser console a bunch of errors **(Error 500 - Not Allowed.)**\n",
"\n",
"import portpicker, subprocess, threading, time, socket, urllib.request\n",
"PORT = portpicker.pick_unused_port()\n",
"\n",
"def iframe_thread(port):\n",
" while True:\n",
" time.sleep(0.5)\n",
" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n",
" result = sock.connect_ex(('127.0.0.1', port))\n",
" if result == 0:\n",
" break\n",
" sock.close()\n",
" from google.colab.output import serve_kernel_port_as_window\n",
" serve_kernel_port_as_window(PORT)\n",
"\n",
"threading.Thread(target=iframe_thread, daemon=True, args=(PORT,)).start()\n",
"\n",
"!python3 MMVCServerSIO.py \\\n",
" -p {PORT} \\\n",
" --https False \\\n",
" --content_vec_500 pretrain/checkpoint_best_legacy_500.pt \\\n",
" --content_vec_500_onnx pretrain/content_vec_500.onnx \\\n",
" --content_vec_500_onnx_on true \\\n",
" --hubert_base pretrain/hubert_base.pt \\\n",
" --hubert_base_jp pretrain/rinna_hubert_base_jp.pt \\\n",
" --hubert_soft pretrain/hubert/hubert-soft-0d54a1f4.pt \\\n",
" --nsf_hifigan pretrain/nsf_hifigan/model \\\n",
" --crepe_onnx_full pretrain/crepe_onnx_full.onnx \\\n",
" --crepe_onnx_tiny pretrain/crepe_onnx_tiny.onnx \\\n",
" --rmvpe pretrain/rmvpe.pt \\\n",
" --model_dir model_dir \\\n",
" --samples samples.json"
],
"metadata": {
"id": "P2BN-iWvDrMM",
"cellView": "form"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": [],
"include_colab_link": true
"private_outputs": true,
"include_colab_link": true,
"gpuType": "T4",
"collapsed_sections": [
"iuf9pBHYpTn-"
]
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"accelerator": "GPU"
},
"nbformat": 4,
"nbformat_minor": 0
}
}