mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 05:25:01 +03:00
WIP: switch base from trainer to client
This commit is contained in:
parent
ae66ec3d3f
commit
9f3dab0295
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,6 +4,7 @@ __pycache__
|
||||
|
||||
server/upload_dir/
|
||||
server/MMVC_Trainer/
|
||||
server/MMVC_Client/
|
||||
server/key
|
||||
server/info
|
||||
|
||||
|
@ -8,8 +8,9 @@ from distutils.util import strtobool
|
||||
|
||||
from scipy.io.wavfile import write, read
|
||||
|
||||
sys.path.append("MMVC_Trainer")
|
||||
sys.path.append("MMVC_Trainer/text")
|
||||
# sys.path.append("MMVC_Trainer")
|
||||
# sys.path.append("MMVC_Trainer/text")
|
||||
sys.path.append("MMVC_Client/python")
|
||||
|
||||
from fastapi.routing import APIRoute
|
||||
from fastapi import HTTPException, FastAPI, UploadFile, File, Form
|
||||
|
@ -2,13 +2,15 @@ import logging
|
||||
|
||||
# logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
|
||||
class UvicornSuppressFilter(logging.Filter):
|
||||
def filter(self, record):
|
||||
return False
|
||||
# class UvicornSuppressFilter(logging.Filter):
|
||||
# def filter(self, record):
|
||||
# return False
|
||||
|
||||
# logger = logging.getLogger("uvicorn.error")
|
||||
# logger.addFilter(UvicornSuppressFilter())
|
||||
|
||||
logger = logging.getLogger("uvicorn.error")
|
||||
logger.addFilter(UvicornSuppressFilter())
|
||||
# logger.propagate = False
|
||||
|
||||
logger = logging.getLogger("multipart.multipart")
|
||||
logger.propagate = False
|
||||
|
||||
|
151
server/voice_changer/TrainerFunctions.py
Normal file
151
server/voice_changer/TrainerFunctions.py
Normal file
@ -0,0 +1,151 @@
|
||||
import torch
|
||||
import os, sys, json
|
||||
import logging
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
hann_window = {}
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
||||
spec = torch.view_as_real(spec)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
def __init__(self, return_ids=False, no_text = False):
|
||||
self.return_ids = return_ids
|
||||
self.no_text = no_text
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text, audio and speaker identities
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
|
||||
max_text_len = max([len(x[0]) for x in batch])
|
||||
max_spec_len = max([x[1].size(1) for x in batch])
|
||||
max_wav_len = max([x[2].size(1) for x in batch])
|
||||
|
||||
text_lengths = torch.LongTensor(len(batch))
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
wav_lengths = torch.LongTensor(len(batch))
|
||||
sid = torch.LongTensor(len(batch))
|
||||
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
text_padded.zero_()
|
||||
spec_padded.zero_()
|
||||
wav_padded.zero_()
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
text = row[0]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wav = row[2]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
wav_lengths[i] = wav.size(1)
|
||||
|
||||
sid[i] = row[3]
|
||||
|
||||
if self.return_ids:
|
||||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
||||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
||||
assert os.path.isfile(checkpoint_path), f"No such file or directory: {checkpoint_path}"
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
iteration = checkpoint_dict['iteration']
|
||||
learning_rate = checkpoint_dict['learning_rate']
|
||||
if optimizer is not None:
|
||||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
saved_state_dict = checkpoint_dict['model']
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict= {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
except:
|
||||
logger.info("%s is not in the checkpoint" % k)
|
||||
new_state_dict[k] = v
|
||||
if hasattr(model, 'module'):
|
||||
model.module.load_state_dict(new_state_dict)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict)
|
||||
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
||||
checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams =HParams(**config)
|
||||
return hparams
|
||||
|
||||
class HParams():
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
@ -4,17 +4,34 @@ import math, os, traceback
|
||||
from scipy.io.wavfile import write, read
|
||||
import numpy as np
|
||||
from dataclasses import dataclass, asdict
|
||||
import utils
|
||||
import commons
|
||||
from models import SynthesizerTrn
|
||||
|
||||
from text.symbols import symbols
|
||||
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||
|
||||
from mel_processing import spectrogram_torch
|
||||
from text import text_to_sequence, cleaned_text_to_sequence
|
||||
import onnxruntime
|
||||
|
||||
|
||||
# import utils
|
||||
# import commons
|
||||
# from models import SynthesizerTrn
|
||||
|
||||
#from text.symbols import symbols
|
||||
# from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||
|
||||
# from mel_processing import spectrogram_torch
|
||||
|
||||
#from text import text_to_sequence, cleaned_text_to_sequence
|
||||
|
||||
|
||||
################
|
||||
from symbols import symbols
|
||||
# from mmvc_client import get_hparams_from_file, load_checkpoint
|
||||
from models import SynthesizerTrn
|
||||
################
|
||||
|
||||
# from voice_changer.utils import get_hparams_from_file, load_checkpoint
|
||||
# from voice_changer.models import SynthesizerTrn
|
||||
# from voice_changer.symbols import symbols
|
||||
|
||||
from voice_changer.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
|
||||
|
||||
providers = ['OpenVINOExecutionProvider',"CUDAExecutionProvider","DmlExecutionProvider","CPUExecutionProvider"]
|
||||
|
||||
@dataclass
|
||||
@ -49,12 +66,17 @@ class VoiceChanger():
|
||||
self.currentCrossFadeOverlapRate=0
|
||||
|
||||
# 共通で使用する情報を収集
|
||||
self.hps = utils.get_hparams_from_file(config)
|
||||
# self.hps = utils.get_hparams_from_file(config)
|
||||
self.hps = get_hparams_from_file(config)
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
|
||||
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||||
text_norm = commons.intersperse(text_norm, 0)
|
||||
self.text_norm = torch.LongTensor(text_norm)
|
||||
# text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||||
# print("text_norm1: ",text_norm)
|
||||
# text_norm = commons.intersperse(text_norm, 0)
|
||||
# print("text_norm2: ",text_norm)
|
||||
# self.text_norm = torch.LongTensor(text_norm)
|
||||
|
||||
self.text_norm = torch.LongTensor([0, 6, 0])
|
||||
self.audio_buffer = torch.zeros(1, 0)
|
||||
self.prev_audio = np.zeros(1)
|
||||
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
||||
@ -77,7 +99,8 @@ class VoiceChanger():
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model)
|
||||
self.net_g.eval()
|
||||
utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
@ -232,7 +255,7 @@ class VoiceChanger():
|
||||
with torch.no_grad():
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId]).cpu()
|
||||
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value)
|
||||
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value)
|
||||
|
||||
if self.prev_strength.device != torch.device('cpu'):
|
||||
print(f"prev_strength move from {self.prev_strength.device} to cpu")
|
||||
@ -263,7 +286,7 @@ class VoiceChanger():
|
||||
with torch.no_grad():
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(self.settings.gpu) for x in data]
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
|
||||
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value
|
||||
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
|
||||
|
||||
if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
|
||||
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
|
||||
|
Loading…
Reference in New Issue
Block a user