mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
1st return
This commit is contained in:
parent
a180dfa7e4
commit
a32cd29f51
346
server/voice_changer/DDSP_SVC/DDSP_SVC.py
Normal file
346
server/voice_changer/DDSP_SVC/DDSP_SVC.py
Normal file
@ -0,0 +1,346 @@
|
||||
import sys
|
||||
import os
|
||||
if sys.platform.startswith('darwin'):
|
||||
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
||||
if len(baseDir) != 1:
|
||||
print("baseDir should be only one ", baseDir)
|
||||
sys.exit()
|
||||
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
|
||||
sys.path.append(modulePath)
|
||||
else:
|
||||
sys.path.append("DDSP-SVC")
|
||||
|
||||
import io
|
||||
from dataclasses import dataclass, asdict, field
|
||||
from functools import reduce
|
||||
import numpy as np
|
||||
import torch
|
||||
import onnxruntime
|
||||
import pyworld as pw
|
||||
import ddsp.vocoder as vo
|
||||
from ddsp.core import upsample
|
||||
from slicer import Slicer
|
||||
import librosa
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
|
||||
from scipy.io import wavfile
|
||||
|
||||
|
||||
@dataclass
|
||||
class DDSP_SVCSettings():
|
||||
gpu: int = 0
|
||||
dstId: int = 0
|
||||
|
||||
f0Detector: str = "dio" # dio or harvest
|
||||
tran: int = 20
|
||||
noiceScale: float = 0.3
|
||||
predictF0: int = 0 # 0:False, 1:True
|
||||
silentThreshold: float = 0.00001
|
||||
extraConvertSize: int = 1024 * 32
|
||||
clusterInferRatio: float = 0.1
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str = ""
|
||||
onnxModelFile: str = ""
|
||||
configFile: str = ""
|
||||
|
||||
speakers: dict[str, int] = field(
|
||||
default_factory=lambda: {}
|
||||
)
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
|
||||
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
|
||||
strData = ["framework", "f0Detector"]
|
||||
|
||||
|
||||
class DDSP_SVC:
|
||||
def __init__(self, params):
|
||||
self.settings = DDSP_SVCSettings()
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
|
||||
self.raw_path = io.BytesIO()
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.prevVol = 0
|
||||
self.params = params
|
||||
print("DDSP-SVC initialization:", params)
|
||||
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
|
||||
|
||||
self.settings.configFile = config
|
||||
# model
|
||||
model, args = vo.load_model(pyTorch_model_file)
|
||||
|
||||
# hubert
|
||||
self.model = model
|
||||
self.args = args
|
||||
|
||||
vec_path = self.params["hubert"]
|
||||
self.encoder = vo.Units_Encoder(
|
||||
args.data.encoder,
|
||||
vec_path,
|
||||
args.data.encoder_sample_rate,
|
||||
args.data.encoder_hop_size,
|
||||
device="cpu")
|
||||
# f0dec
|
||||
self.f0_detector = vo.F0_Extractor(
|
||||
self.settings.f0Detector,
|
||||
44100,
|
||||
512,
|
||||
float(50),
|
||||
float(1100))
|
||||
|
||||
return self.get_info()
|
||||
|
||||
def update_setteings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
||||
if val == "CUDAExecutionProvider":
|
||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||
self.settings.gpu = 0
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
||||
else:
|
||||
self.onnx_session.set_providers(providers=[val])
|
||||
elif key in self.settings.intData:
|
||||
setattr(self.settings, key, int(val))
|
||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
||||
providers = self.onnx_session.get_providers()
|
||||
print("Providers:", providers)
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
setattr(self.settings, key, str(val))
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
def get_processing_sampling_rate(self):
|
||||
return 44100
|
||||
|
||||
# def get_unit_f0(self, audio_buffer, tran):
|
||||
# if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
|
||||
# dev = torch.device("cpu")
|
||||
# else:
|
||||
# dev = torch.device("cpu")
|
||||
# # dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
# wav_44k = audio_buffer
|
||||
# f0 = self.f0_detector.extract(wav_44k, uv_interp=True, device=dev)
|
||||
# f0 = torch.from_numpy(f0).float().to(dev).unsqueeze(-1).unsqueeze(0)
|
||||
# f0 = f0 * 2 ** (float(10) / 12)
|
||||
# # print("f0:", f0)
|
||||
|
||||
# print("wav_44k:::", wav_44k)
|
||||
# c = self.encoder.encode(torch.from_numpy(audio_buffer).float().unsqueeze(0).to(dev), 44100, 512)
|
||||
# # print("c:", c)
|
||||
# return c, f0
|
||||
|
||||
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
||||
# newData = newData.astype(np.float32) / 32768.0
|
||||
# newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
|
||||
hop_size = int(self.args.data.block_size * 44100 / self.args.data.sampling_rate)
|
||||
print("hopsize", hop_size)
|
||||
if convertSize % hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||
convertSize = convertSize + (hop_size - (convertSize % hop_size))
|
||||
|
||||
print("convsize", convertSize)
|
||||
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
||||
|
||||
# crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
||||
|
||||
# rms = np.sqrt(np.square(crop).mean(axis=0))
|
||||
# vol = max(rms, self.prevVol * 0.0)
|
||||
# self.prevVol = vol
|
||||
|
||||
# c, f0 = self.get_unit_f0(self.audio_buffer, self.settings.tran)
|
||||
# return (c, f0, convertSize, vol)
|
||||
wavfile.write("tmp2.wav", 44100, self.audio_buffer.astype(np.int16))
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
||||
print("[Voice Changer] No onnx session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
c = data[0]
|
||||
f0 = data[1]
|
||||
convertSize = data[2]
|
||||
vol = data[3]
|
||||
|
||||
if vol < self.settings.silentThreshold:
|
||||
return np.zeros(convertSize).astype(np.int16)
|
||||
|
||||
c, f0, uv = [x.numpy() for x in data]
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"c": c,
|
||||
"f0": f0,
|
||||
"g": np.array([self.settings.dstId]).astype(np.int64),
|
||||
"uv": np.array([self.settings.dstId]).astype(np.int64),
|
||||
"predict_f0": np.array([self.settings.dstId]).astype(np.int64),
|
||||
"noice_scale": np.array([self.settings.dstId]).astype(np.int64),
|
||||
|
||||
|
||||
})[0][0, 0] * self.hps.data.max_wav_value
|
||||
|
||||
audio1 = audio1 * vol
|
||||
|
||||
result = audio1
|
||||
|
||||
return result
|
||||
|
||||
pass
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
|
||||
if hasattr(self, "model") == False or self.model == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
# if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
# dev = torch.device("cpu")
|
||||
# else:
|
||||
# dev = torch.device("cpu")
|
||||
# # dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
# c = data[0]
|
||||
# f0 = data[1]
|
||||
# convertSize = data[2]
|
||||
# vol = data[3]
|
||||
# if vol < self.settings.silentThreshold:
|
||||
# return np.zeros(convertSize).astype(np.int16)
|
||||
|
||||
# with torch.no_grad():
|
||||
# c.to(dev)
|
||||
# f0.to(dev)
|
||||
# vol = torch.from_numpy(np.array([vol] * c.shape[1])).float().to(dev).unsqueeze(-1).unsqueeze(0)
|
||||
# spk_id = torch.LongTensor(np.array([[1]])).to(dev)
|
||||
# # print("vol", vol)
|
||||
# print("input", c.shape, f0.shape)
|
||||
# seg_output, _, (s_h, s_n) = self.model(c, f0, vol, spk_id=spk_id)
|
||||
|
||||
# seg_output = seg_output.squeeze().cpu().numpy()
|
||||
# print("SEG:", seg_output)
|
||||
|
||||
audio, sample_rate = librosa.load("tmp2.wav", sr=None)
|
||||
if len(audio.shape) > 1:
|
||||
audio = librosa.to_mono(audio)
|
||||
hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
|
||||
|
||||
print("hop_size", hop_size)
|
||||
f0 = self.f0_detector.extract(audio, uv_interp=True)
|
||||
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
||||
f0 = f0 * 2 ** (float(10) / 12)
|
||||
volume_extractor = vo.Volume_Extractor(hop_size)
|
||||
volume = volume_extractor.extract(audio)
|
||||
mask = (volume > 10 ** (float(-60) / 20)).astype('float')
|
||||
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
||||
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
|
||||
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
||||
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
||||
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
||||
|
||||
spk_id = torch.LongTensor(np.array([[int(1)]]))
|
||||
result = np.zeros(0)
|
||||
current_length = 0
|
||||
segments = split(audio, sample_rate, hop_size)
|
||||
|
||||
from tqdm import tqdm
|
||||
with torch.no_grad():
|
||||
for segment in tqdm(segments):
|
||||
start_frame = segment[0]
|
||||
seg_input = torch.from_numpy(segment[1]).float().unsqueeze(0)
|
||||
seg_units = self.encoder.encode(seg_input, sample_rate, hop_size)
|
||||
|
||||
seg_f0 = f0[:, start_frame: start_frame + seg_units.size(1), :]
|
||||
seg_volume = volume[:, start_frame: start_frame + seg_units.size(1), :]
|
||||
|
||||
seg_output, _, (s_h, s_n) = self.model(seg_units, seg_f0, seg_volume, spk_id=spk_id, spk_mix_dict=None)
|
||||
seg_output *= mask[:, start_frame * self.args.data.block_size: (start_frame + seg_units.size(1)) * self.args.data.block_size]
|
||||
|
||||
output_sample_rate = self.args.data.sampling_rate
|
||||
|
||||
seg_output = seg_output.squeeze().cpu().numpy()
|
||||
|
||||
silent_length = round(start_frame * self.args.data.block_size * output_sample_rate / self.args.data.sampling_rate) - current_length
|
||||
if silent_length >= 0:
|
||||
result = np.append(result, np.zeros(silent_length))
|
||||
result = np.append(result, seg_output)
|
||||
else:
|
||||
result = cross_fade(result, seg_output, current_length + silent_length)
|
||||
current_length = current_length + silent_length + len(seg_output)
|
||||
# sf.write("out.wav", result, output_sample_rate)
|
||||
wavfile.write("out.wav", 44100, result)
|
||||
print("result:::", result)
|
||||
return np.array(result * 32768.0).astype(np.int16)
|
||||
return np.array(result).astype(np.int16)
|
||||
|
||||
# return np.zeros(1).astype(np.int16)
|
||||
|
||||
# return seg_output
|
||||
|
||||
def inference(self, data):
|
||||
if self.settings.framework == "ONNX":
|
||||
audio = self._onnx_inference(data)
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
return audio
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
|
||||
|
||||
def split(audio, sample_rate, hop_size, db_thresh=-40, min_len=5000):
|
||||
slicer = Slicer(
|
||||
sr=sample_rate,
|
||||
threshold=db_thresh,
|
||||
min_length=min_len)
|
||||
chunks = dict(slicer.slice(audio))
|
||||
result = []
|
||||
for k, v in chunks.items():
|
||||
tag = v["split_time"].split(",")
|
||||
if tag[0] != tag[1]:
|
||||
start_frame = int(int(tag[0]) // hop_size)
|
||||
end_frame = int(int(tag[1]) // hop_size)
|
||||
if end_frame > start_frame:
|
||||
result.append((
|
||||
start_frame,
|
||||
audio[int(start_frame * hop_size): int(end_frame * hop_size)]))
|
||||
return result
|
||||
|
||||
|
||||
def cross_fade(a: np.ndarray, b: np.ndarray, idx: int):
|
||||
result = np.zeros(idx + b.shape[0])
|
||||
fade_len = a.shape[0] - idx
|
||||
np.copyto(dst=result[:idx], src=a[:idx])
|
||||
k = np.linspace(0, 1.0, num=fade_len, endpoint=True)
|
||||
result[idx: a.shape[0]] = (1 - k) * a[idx:] + k * b[: fade_len]
|
||||
np.copyto(dst=result[a.shape[0]:], src=b[fade_len:])
|
||||
return result
|
@ -191,6 +191,7 @@ class VoiceChanger():
|
||||
try:
|
||||
# Inference
|
||||
audio = self.voiceChanger.inference(data)
|
||||
print("audio", audio)
|
||||
|
||||
if hasattr(self, 'np_prev_audio1') == True:
|
||||
np.set_printoptions(threshold=10000)
|
||||
|
Loading…
Reference in New Issue
Block a user