first try

This commit is contained in:
wataru 2023-03-07 10:16:11 +09:00
parent 9a6b9851db
commit a51fa4d4cb
3 changed files with 176 additions and 143 deletions

7
.gitignore vendored
View File

@ -13,8 +13,15 @@ server/out.wav
server/G_*.pth server/G_*.pth
server/train_config.json server/train_config.json
# v.1.3.xテスト用モデルフォルダ
server/v13 server/v13
server/hubert
server/so-vits-svc
# sovitsテスト用モデルフォルダ
server/sovits
server/test
server/memo.md server/memo.md
client/lib/dist client/lib/dist

View File

@ -1,5 +1,6 @@
import sys import sys
sys.path.append("MMVC_Client/python") # sys.path.append("MMVC_Client/python")
sys.path.append("so-vits-svc")
from distutils.util import strtobool from distutils.util import strtobool
from datetime import datetime from datetime import datetime

View File

@ -8,11 +8,11 @@ import resampy
import onnxruntime import onnxruntime
from symbols import symbols # from symbols import symbols
from models import SynthesizerTrn # from models import SynthesizerTrn
import pyworld as pw import pyworld as pw
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint # from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
import time import time
@ -28,6 +28,13 @@ import librosa
import librosa.display import librosa.display
SAMPLING_RATE = 24000 SAMPLING_RATE = 24000
from inference.infer_tool import Svc
import soundfile
from scipy.io.wavfile import write
import io
import torchaudio
class MockStream: class MockStream:
"""gi """gi
@ -123,12 +130,17 @@ class VoiceChanger():
self.gpu_num = torch.cuda.device_count() self.gpu_num = torch.cuda.device_count()
self.text_norm = torch.LongTensor([0, 6, 0]) self.text_norm = torch.LongTensor([0, 6, 0])
self.audio_buffer = torch.zeros(1, 0) self.audio_buffer = torch.zeros(0)
self.prev_audio = np.zeros(1) self.prev_audio = np.zeros(1)
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available() self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})") print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
###############################################
###############################################
# self.raw_path2 = "test/test.wav"
self.raw_path = io.BytesIO()
def _setupRecordIO(self): def _setupRecordIO(self):
# IO Recorder Setup # IO Recorder Setup
if hasattr(self, "stream_out"): if hasattr(self, "stream_out"):
@ -158,7 +170,7 @@ class VoiceChanger():
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None): def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
self.settings.configFile = config self.settings.configFile = config
self.hps = get_hparams_from_file(config) # self.hps = get_hparams_from_file(config)
if pyTorch_model_file != None: if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file: if onnx_model_file:
@ -166,27 +178,28 @@ class VoiceChanger():
# PyTorchモデル生成 # PyTorchモデル生成
if pyTorch_model_file != None: if pyTorch_model_file != None:
self.net_g = SynthesizerTrn( # self.net_g = SynthesizerTrn(
spec_channels=self.hps.data.filter_length // 2 + 1, # spec_channels=self.hps.data.filter_length // 2 + 1,
segment_size=self.hps.train.segment_size // self.hps.data.hop_length, # segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
inter_channels=self.hps.model.inter_channels, # inter_channels=self.hps.model.inter_channels,
hidden_channels=self.hps.model.hidden_channels, # hidden_channels=self.hps.model.hidden_channels,
upsample_rates=self.hps.model.upsample_rates, # upsample_rates=self.hps.model.upsample_rates,
upsample_initial_channel=self.hps.model.upsample_initial_channel, # upsample_initial_channel=self.hps.model.upsample_initial_channel,
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes, # upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
n_flow=self.hps.model.n_flow, # n_flow=self.hps.model.n_flow,
dec_out_channels=1, # dec_out_channels=1,
dec_kernel_size=7, # dec_kernel_size=7,
n_speakers=self.hps.data.n_speakers, # n_speakers=self.hps.data.n_speakers,
gin_channels=self.hps.model.gin_channels, # gin_channels=self.hps.model.gin_channels,
requires_grad_pe=self.hps.requires_grad.pe, # requires_grad_pe=self.hps.requires_grad.pe,
requires_grad_flow=self.hps.requires_grad.flow, # requires_grad_flow=self.hps.requires_grad.flow,
requires_grad_text_enc=self.hps.requires_grad.text_enc, # requires_grad_text_enc=self.hps.requires_grad.text_enc,
requires_grad_dec=self.hps.requires_grad.dec # requires_grad_dec=self.hps.requires_grad.dec
) # )
self.net_g.eval() # self.net_g.eval()
load_checkpoint(pyTorch_model_file, self.net_g, None) # load_checkpoint(pyTorch_model_file, self.net_g, None)
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
self.net_g = Svc(pyTorch_model_file, config)
# ONNXモデル生成 # ONNXモデル生成
if onnx_model_file != None: if onnx_model_file != None:
@ -325,42 +338,11 @@ class VoiceChanger():
def _generate_input(self, unpackedData: any, convertSize: int): def _generate_input(self, unpackedData: any, convertSize: int):
# 今回変換するデータをテンソルとして整形する # 今回変換するデータをテンソルとして整形する
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成 # unpackedData = unpackedData / self.hps.data.max_wav_value # normalize
audio_norm = audio / self.hps.data.max_wav_value # normalize self.audio_buffer = np.concatenate([self.audio_buffer, unpackedData], 0) # 過去のデータに連結
audio_norm = audio_norm.unsqueeze(0) # unsqueeze self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結 # print("convert size", self.audio_buffer.shape)
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出 return
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
self.audio_buffer = audio_norm
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
if self.settings.f0Detector == "dio":
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
else:
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
f0 = torch.from_numpy(f0.astype(np.float32))
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
# dispose_stft_specs = 2
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
spec = torch.squeeze(spec, 0)
sid = torch.LongTensor([int(self.settings.srcId)])
# data = (self.text_norm, spec, audio_norm, sid)
# data = TextAudioSpeakerCollate()([data])
data = TextAudioSpeakerCollate(
sample_rate=self.hps.data.sampling_rate,
hop_size=self.hps.data.hop_length,
f0_factor=self.settings.f0Factor
)([(spec, sid, f0)])
return data
def _onnx_inference(self, data, inputSize): def _onnx_inference(self, data, inputSize):
if hasattr(self, "onnx_session") == False or self.onnx_session == None: if hasattr(self, "onnx_session") == False or self.onnx_session == None:
@ -404,114 +386,154 @@ class VoiceChanger():
self.np_prev_audio1 = audio1 self.np_prev_audio1 = audio1
return result return result
def _pyTorch_inference(self, data, inputSize): def _pyTorch_inference(self, inputSize):
if hasattr(self, "net_g") == False or self.net_g == None: if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.") print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16) return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0: self.raw_path.seek(0)
with torch.no_grad(): soundfile.write(self.raw_path, self.audio_buffer.astype(np.int16), 32000, format="wav")
spec, spec_lengths, sid_src, sin, d = data write("test/received_data.wav", 32000, self.audio_buffer.astype(np.int16))
spec = spec.cpu()
spec_lengths = spec_lengths.cpu()
sid_src = sid_src.cpu()
sin = sin.cpu()
d = tuple([d[:1].cpu() for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).cpu()
audio1 = self.net_g.cpu().voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value self.raw_path.seek(0)
out_audio, out_sr = self.net_g.infer('speaker1', 20, self.raw_path)
audio1 = out_audio * 32768.0
print("audio1.shape1", self.audio_buffer.shape, audio1.shape)
if self.prev_strength.device != torch.device('cpu'): if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
print(f"prev_strength move from {self.prev_strength.device} to cpu") print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
self.prev_strength = self.prev_strength.cpu() self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
if self.cur_strength.device != torch.device('cpu'): if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
print(f"cur_strength move from {self.cur_strength.device} to cpu") print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
self.cur_strength = self.cur_strength.cpu() self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。 if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize) print("crossfade")
prev_overlap = self.prev_audio1[-1 * overlapSize:] overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize] prev_overlap = self.prev_audio1[-1 * overlapSize:]
powered_prev = prev_overlap * self.prev_strength cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
powered_cur = cur_overlap * self.cur_strength powered_prev = prev_overlap * self.prev_strength
powered_result = powered_prev + powered_cur powered_cur = cur_overlap * self.cur_strength
powered_result = powered_prev + powered_cur
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。 # print(overlapSize, prev_overlap.shape, cur_overlap.shape, self.prev_strength.shape, self.cur_strength.shape)
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合 # print(self.prev_audio1.shape, audio1.shape, inputSize, overlapSize)
else: cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
cur = audio1[-2 * inputSize:-1 * inputSize] result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
result = cur
self.prev_audio1 = audio1
result = result.cpu().float().numpy()
else: else:
with torch.no_grad(): print("no crossfade")
spec, spec_lengths, sid_src, sin, d = data cur = audio1[-2 * inputSize:-1 * inputSize]
spec = spec.cuda(self.settings.gpu) result = cur
spec_lengths = spec_lengths.cuda(self.settings.gpu) self.prev_audio1 = audio1
sid_src = sid_src.cuda(self.settings.gpu)
sin = sin.cuda(self.settings.gpu)
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
# audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, result = result.cpu().float().numpy()
# sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sin, d, # if self.settings.gpu < 0 or self.gpu_num == 0:
sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value # with torch.no_grad():
# spec, spec_lengths, sid_src, sin, d = data
# spec = spec.cpu()
# spec_lengths = spec_lengths.cpu()
# sid_src = sid_src.cpu()
# sin = sin.cpu()
# d = tuple([d[:1].cpu() for d in d])
# sid_target = torch.LongTensor([self.settings.dstId]).cpu()
if self.prev_strength.device != torch.device('cuda', self.settings.gpu): # audio1 = self.net_g.cpu().voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu): # if self.prev_strength.device != torch.device('cpu'):
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize) # print(f"prev_strength move from {self.prev_strength.device} to cpu")
prev_overlap = self.prev_audio1[-1 * overlapSize:] # self.prev_strength = self.prev_strength.cpu()
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize] # if self.cur_strength.device != torch.device('cpu'):
powered_prev = prev_overlap * self.prev_strength # print(f"cur_strength move from {self.cur_strength.device} to cpu")
powered_cur = cur_overlap * self.cur_strength # self.cur_strength = self.cur_strength.cpu()
powered_result = powered_prev + powered_cur
# print(overlapSize, prev_overlap.shape, cur_overlap.shape, self.prev_strength.shape, self.cur_strength.shape) # if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。
# print(self.prev_audio1.shape, audio1.shape, inputSize, overlapSize) # overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
# prev_overlap = self.prev_audio1[-1 * overlapSize:]
# cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
# powered_prev = prev_overlap * self.prev_strength
# powered_cur = cur_overlap * self.cur_strength
# powered_result = powered_prev + powered_cur
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。 # cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合 # result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
else: # else:
cur = audio1[-2 * inputSize:-1 * inputSize] # cur = audio1[-2 * inputSize:-1 * inputSize]
result = cur # result = cur
self.prev_audio1 = audio1
result = result.cpu().float().numpy() # self.prev_audio1 = audio1
# result = result.cpu().float().numpy()
# else:
# with torch.no_grad():
# spec, spec_lengths, sid_src, sin, d = data
# spec = spec.cuda(self.settings.gpu)
# spec_lengths = spec_lengths.cuda(self.settings.gpu)
# sid_src = sid_src.cuda(self.settings.gpu)
# sin = sin.cuda(self.settings.gpu)
# d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
# sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
# # audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src,
# # sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
# audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sin, d,
# sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
# if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
# print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
# self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
# if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
# print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
# self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
# if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
# overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
# prev_overlap = self.prev_audio1[-1 * overlapSize:]
# cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
# powered_prev = prev_overlap * self.prev_strength
# powered_cur = cur_overlap * self.cur_strength
# powered_result = powered_prev + powered_cur
# # print(overlapSize, prev_overlap.shape, cur_overlap.shape, self.prev_strength.shape, self.cur_strength.shape)
# # print(self.prev_audio1.shape, audio1.shape, inputSize, overlapSize)
# cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
# result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
# else:
# cur = audio1[-2 * inputSize:-1 * inputSize]
# result = cur
# self.prev_audio1 = audio1
# result = result.cpu().float().numpy()
return result return result
def on_request(self, unpackedData: any): def on_request(self, unpackedData: any):
print("input size:", unpackedData.shape)
unpackedData = resampy.resample(unpackedData, 24000, 32000)
with Timer("pre-process") as t: with Timer("pre-process") as t:
if self.settings.inputSampleRate != 24000:
unpackedData = resampy.resample(unpackedData, 48000, 24000)
convertSize = unpackedData.shape[0] + min(self.settings.crossFadeOverlapSize, unpackedData.shape[0]) convertSize = unpackedData.shape[0] + min(self.settings.crossFadeOverlapSize, unpackedData.shape[0])
# print(convertSize, unpackedData.shape[0])
if convertSize < 8192: if convertSize < 8192:
convertSize = 8192 convertSize = 8192
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128)) convertSize = convertSize + (128 - (convertSize % 128))
self._generate_strength(unpackedData) self._generate_strength(unpackedData)
data = self._generate_input(unpackedData, convertSize) self._generate_input(unpackedData, convertSize)
preprocess_time = t.secs preprocess_time = t.secs
with Timer("main-process") as t: with Timer("main-process") as t:
try: try:
if self.settings.framework == "ONNX": if self.settings.framework == "ONNX":
result = self._onnx_inference(data, unpackedData.shape[0]) result = self._onnx_inference(unpackedData.shape[0])
else: else:
result = self._pyTorch_inference(data, unpackedData.shape[0]) result = self._pyTorch_inference(unpackedData.shape[0])
write("test/out_data.wav", 32000, result.astype(np.int16))
except Exception as e: except Exception as e:
print("VC PROCESSING!!!! EXCEPTION!!!", e) print("VC PROCESSING!!!! EXCEPTION!!!", e)
@ -524,18 +546,21 @@ class VoiceChanger():
mainprocess_time = t.secs mainprocess_time = t.secs
with Timer("post-process") as t: with Timer("post-process") as t:
result = resampy.resample(result, 32000, 24000).astype(np.int16)
result = result.astype(np.int16) # result = result.astype(np.int16)
# print("on_request result size:",result.shape) # # print("on_request result size:",result.shape)
if self.settings.recordIO == 1: # if self.settings.recordIO == 1:
self.stream_in.write(unpackedData.astype(np.int16).tobytes()) # self.stream_in.write(unpackedData.astype(np.int16).tobytes())
self.stream_out.write(result.tobytes()) # self.stream_out.write(result.tobytes())
if self.settings.inputSampleRate != 24000: # if self.settings.inputSampleRate != 24000:
result = resampy.resample(result, 24000, 48000).astype(np.int16) # result = resampy.resample(result, 24000, 48000).astype(np.int16)
postprocess_time = t.secs postprocess_time = t.secs
perf = [preprocess_time, mainprocess_time, postprocess_time] perf = [preprocess_time, mainprocess_time, postprocess_time]
print("output size:", result.shape)
return result, perf return result, perf