mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-03-13 19:34:02 +03:00
commit
af0ebaccd1
463
VoiceChangerDemo_Simple.ipynb
Normal file
463
VoiceChangerDemo_Simple.ipynb
Normal file
@ -0,0 +1,463 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": [],
|
||||
"collapsed_sections": [],
|
||||
"authorship_tag": "ABX9TyN7lDdQ3iB8T1SI4BKFzkWz",
|
||||
"include_colab_link": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"accelerator": "GPU",
|
||||
"gpuClass": "standard"
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "view-in-github",
|
||||
"colab_type": "text"
|
||||
},
|
||||
"source": [
|
||||
"<a href=\"https://colab.research.google.com/github/w-okada/voice-changer/blob/dev/VoiceChangerDemo_Simple.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Voice Changer Simple (デモ版)\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"このノートはVoice ChangerをColab上で動かすデモ版です。\n",
|
||||
"\n",
|
||||
"正式版はローカルPCのDocker上で動かすアプリケーションです。\n",
|
||||
"\n",
|
||||
"正式版は、多くの場合より少ないタイムラグで滑らかに音声を変換できます。\n",
|
||||
"\n",
|
||||
"詳細な使用方法はこちらの[リポジトリ](https://github.com/w-okada/voice-changer)からご確認ください。\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Lbbmx_Vjl0zo"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# GPUを確認\n",
|
||||
"GPUを用いたほうが高速に処理が行えます。\n",
|
||||
"\n",
|
||||
"下記のコマンドでGPUが確認できない場合は、上のメニューから\n",
|
||||
"\n",
|
||||
"「ランタイム」→「ランタイムの変更」→「ハードウェア アクセラレータ」\n",
|
||||
"\n",
|
||||
"でGPUを選択してください。"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "oUKi1NYMmXrr"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (1) GPUの確認\n",
|
||||
"!nvidia-smi"
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "vV1t7PBRm-o6",
|
||||
"outputId": "2ab5d79e-0fe1-4e48-9fb4-8a61399e0b60"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Sun Oct 30 10:03:39 2022 \n",
|
||||
"+-----------------------------------------------------------------------------+\n",
|
||||
"| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
|
||||
"|-------------------------------+----------------------+----------------------+\n",
|
||||
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
||||
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
||||
"| | | MIG M. |\n",
|
||||
"|===============================+======================+======================|\n",
|
||||
"| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n",
|
||||
"| N/A 35C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |\n",
|
||||
"| | | N/A |\n",
|
||||
"+-------------------------------+----------------------+----------------------+\n",
|
||||
" \n",
|
||||
"+-----------------------------------------------------------------------------+\n",
|
||||
"| Processes: |\n",
|
||||
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
||||
"| ID ID Usage |\n",
|
||||
"|=============================================================================|\n",
|
||||
"| No running processes found |\n",
|
||||
"+-----------------------------------------------------------------------------+\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# 使用するモデルとコンフィグファイルの指定\n",
|
||||
"\n",
|
||||
"使用するトレーニング済みのモデルと、トレーニングで使用したコンフィグファイルのパスを指定してください。\n",
|
||||
"\n",
|
||||
"多くの場合はGoogle Driveに格納されているファイルを使用すると思います。その場合は、下の(2-2)のセルを実行してドライブをマウントしてください"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "mHvGrgaWnIPA"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# # (2-1) 使用するモデルとコンフィグファイルの指定\n",
|
||||
"# CONFIG=\"/content/drive/MyDrive/VoiceChanger/config.json\"\n",
|
||||
"# MODEL=\"/content/drive/MyDrive/VoiceChanger/G_326000.pth\""
|
||||
],
|
||||
"metadata": {
|
||||
"id": "nSXATMWYb4Ik"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "2wxD-gRSMU5R",
|
||||
"outputId": "dabd982a-87c7-44d1-b9e8-986691190771"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Mounted at /content/drive\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# # (2-2) Google Driveのマウント\n",
|
||||
"# from google.colab import drive\n",
|
||||
"# drive.mount('/content/drive')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# リポジトリのクローン\n",
|
||||
"リポジトリをクローンします"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "sLBfykjBnjWc"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (3) リポジトリのクローン\n",
|
||||
"!git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.1.3 /MMVC_Trainer\n",
|
||||
"!git clone --depth 1 https://github.com/w-okada/voice-changer.git -b dev\n",
|
||||
"%cd voice-changer/demo/\n"
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "86wTFmqsNMnD",
|
||||
"outputId": "a52d5b0e-826e-445d-cd3a-4a42cbd52212"
|
||||
},
|
||||
"execution_count": 36,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"fatal: destination path '/MMVC_Trainer' already exists and is not an empty directory.\n",
|
||||
"Cloning into 'voice-changer'...\n",
|
||||
"remote: Enumerating objects: 88, done.\u001b[K\n",
|
||||
"remote: Counting objects: 100% (88/88), done.\u001b[K\n",
|
||||
"remote: Compressing objects: 100% (74/74), done.\u001b[K\n",
|
||||
"remote: Total 88 (delta 14), reused 57 (delta 6), pack-reused 0\u001b[K\n",
|
||||
"Unpacking objects: 100% (88/88), done.\n",
|
||||
"/content/voice-changer/demo/voice-changer/demo/voice-changer/demo/voice-changer/demo/voice-changer/demo\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# ファイルの配置\n",
|
||||
"アプリケーションの挙動を記した設定ファイルをコピーします(4-1)。(4-2)はコピーした設定ファイルを表示しています。もしかしたらうまく動かないときに役立つかもしれません。"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "jmDY8W_fnuSi"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (4-1) 設定ファイルの配置\n",
|
||||
"!cp ../template/setting_mmvc_colab.json ../frontend/dist/assets/setting.json\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Bn4kV8TgXp8i"
|
||||
},
|
||||
"execution_count": 37,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (4-2) 設定ファイルの確認\n",
|
||||
"!cat ../frontend/dist/assets/setting.json\n"
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "pjxPsOOaXXTj",
|
||||
"outputId": "425a36dd-fbdc-4f55-825e-a2c7026f2aab"
|
||||
},
|
||||
"execution_count": 38,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"{\n",
|
||||
" \"app_title\": \"voice-changer\",\n",
|
||||
" \"majar_mode\": \"colab\",\n",
|
||||
" \"voice_changer_server_url\": \"/test\",\n",
|
||||
" \"sample_rate\": 48000,\n",
|
||||
" \"buffer_size\": 1024,\n",
|
||||
" \"prefix_chunk_size\": 36,\n",
|
||||
" \"chunk_size\": 36,\n",
|
||||
" \"speaker_ids\": [100, 107, 101, 102, 103],\n",
|
||||
" \"speaker_names\": [\"ずんだもん\", \"user\", \"そら\", \"めたん\", \"つむぎ\"],\n",
|
||||
" \"src_id\": 107,\n",
|
||||
" \"dst_id\": 100,\n",
|
||||
" \"vf_enable\": true,\n",
|
||||
" \"voice_changer_mode\": \"realtime\",\n",
|
||||
" \"gpu\": 0,\n",
|
||||
" \"available_gpus\": [-1, 0, 1, 2, 3, 4],\n",
|
||||
" \"avatar\": {\n",
|
||||
" \"enable_avatar\": true, \n",
|
||||
" \"motion_capture_face\": true,\n",
|
||||
" \"motion_capture_upperbody\": true,\n",
|
||||
" \"lip_overwrite_with_voice\": true,\n",
|
||||
" \"avatar_url\": \"./assets/vrm/zundamon/zundamon.vrm\",\n",
|
||||
" \"backgournd_image_url\": \"./assets/images/bg_natural_sougen.jpg\",\n",
|
||||
" \"background_color\": \"#0000dd\",\n",
|
||||
" \"chroma_key\": \"#0000dd\",\n",
|
||||
" \"avatar_canvas_size\": [1280, 720],\n",
|
||||
" \"screen_canvas_size\": [1280, 720]\n",
|
||||
" },\n",
|
||||
" \"advance\": {\n",
|
||||
" \"avatar_draw_skip_rate\": 3,\n",
|
||||
" \"screen_draw_skip_rate\": 3,\n",
|
||||
" \"visualizer_draw_skip_rate\": 3,\n",
|
||||
" \"cross_fade_lower_value\": 0.1,\n",
|
||||
" \"cross_fade_offset_rate\": 0.3,\n",
|
||||
" \"cross_fade_end_rate\": 0.6,\n",
|
||||
" \"cross_fade_type\": 2\n",
|
||||
" }\n",
|
||||
"}\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# モジュールのインストール\n",
|
||||
"\n",
|
||||
"必要なモジュールをインストールします。"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "8Na2PbLZSWgZ"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (5) 設定ファイルの確認\n",
|
||||
"!apt-get install -y espeak libsndfile1-dev &> /dev/null\n",
|
||||
"!pip install unidecode &> /dev/null\n",
|
||||
"!pip install phonemizer &> /dev/null\n",
|
||||
"!pip install retry &> /dev/null\n",
|
||||
"!pip install python-socketio &> /dev/null\n",
|
||||
"!pip install fastapi &> /dev/null\n",
|
||||
"!pip install python-multipart &> /dev/null\n",
|
||||
"!pip install uvicorn &> /dev/null\n",
|
||||
"!pip install websockets &> /dev/null\n",
|
||||
"!pip install pyOpenSSL &> /dev/null\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "LwZAAuqxX7yY"
|
||||
},
|
||||
"execution_count": 44,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# サーバの起動\n",
|
||||
"\n",
|
||||
"サーバを起動します。(6-1)\n",
|
||||
"\n",
|
||||
"サーバの起動状況を確認します。(6-2) \n",
|
||||
"\n",
|
||||
"このセルは繰り返し実行することになるのでCtrl+Retでセルを実行してください。\n",
|
||||
"\n",
|
||||
"アクセスできるようになるまで、1~2分かかるようです。コーヒーでも飲みに行きましょう。\n",
|
||||
"\n",
|
||||
"下記のようなテキストが表示されたら起動完了です。\n",
|
||||
"\n",
|
||||
"**`DEBUG:asyncio:Using selector: EpollSelector`**\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
" Phase name:__main__\n",
|
||||
" PHASE3:__main__\n",
|
||||
" PHASE1:__main__\n",
|
||||
"Start MMVC SocketIO Server\n",
|
||||
" CONFIG:None, MODEL:None\n",
|
||||
"DEBUG:asyncio:Using selector: EpollSelector\n",
|
||||
"```\n",
|
||||
"\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "-_2OcN9Borke"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (6-1) サーバの起動\n",
|
||||
"import random\n",
|
||||
"PORT = 10000 + random.randint(1, 9999)\n",
|
||||
"LOG_FILE = f\"LOG_FILE_{PORT}\"\n",
|
||||
"\n",
|
||||
"get_ipython().system_raw(f'python3 MMVCServerSIO.py -p {PORT} --colab True >{LOG_FILE} 2>&1 &')\n",
|
||||
"#print(f\"PORT:{PORT}, LOG_FILE:{LOG_FILE}\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "G-nMdPxEW1rc",
|
||||
"outputId": "ed5fc2d9-f1c5-4aa3-df8d-e306de2e2a30",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
}
|
||||
},
|
||||
"execution_count": 40,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"PORT:19751, LOG_FILE:LOG_FILE_19751\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (6-2) サーバの起動確認 (Ctrl+Retで実行)\n",
|
||||
"!tail -20 {LOG_FILE}"
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "chu06KpAjEK6",
|
||||
"outputId": "e6b67606-1279-49aa-e276-4e2bb83284c1"
|
||||
},
|
||||
"execution_count": 45,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"\u001b[32m Phase name:__main__\u001b[0m\n",
|
||||
"\u001b[32m PHASE3:__main__\u001b[0m\n",
|
||||
"\u001b[32m PHASE1:__main__\u001b[0m\n",
|
||||
"\u001b[17mStart MMVC SocketIO Server\u001b[0m\n",
|
||||
"\u001b[34m CONFIG:None, MODEL:None\u001b[0m\n",
|
||||
"DEBUG:asyncio:Using selector: EpollSelector\n",
|
||||
"\u001b[32m Phase name:MMVCServerSIO\u001b[0m\n",
|
||||
"\u001b[32m PHASE3:MMVCServerSIO\u001b[0m\n",
|
||||
"File saved to: G_326000.pth\n",
|
||||
"Load: config.json, G_326000.pth\n",
|
||||
"INFO:root:Loaded checkpoint 'model_upload_dir/G_326000.pth' (iteration 1136)\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# プロキシを起動\n",
|
||||
"ウェブサーバへのアクセスをするためのプロキシを起動します。\n",
|
||||
"\n",
|
||||
"表示されたURLをクリックして開くと別タブでアプリが開きます。\n",
|
||||
"\n",
|
||||
"Colabなので、ロードにある程度時間がかかります(30秒くらい)。"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "WhxcFLQEpctq"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# (7) プロキシを起動\n",
|
||||
"from google.colab.output import eval_js\n",
|
||||
"proxy = eval_js( \"google.colab.kernel.proxyPort(\" + str(PORT) + \")\" )\n",
|
||||
"print(f\"{proxy}front/\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "nkRjZm95l87C",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 34
|
||||
},
|
||||
"outputId": "bbc830e9-209a-4b71-891d-8cf78cf3077d"
|
||||
},
|
||||
"execution_count": 43,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"https://w6x1mbngbj-496ff2e9c6d22116-19751-colab.googleusercontent.com/front/\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [],
|
||||
"metadata": {
|
||||
"id": "axkt5BjhoiPV"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
}
|
||||
]
|
||||
}
|
379
demo/MMVCServerSIO.py
Executable file
379
demo/MMVCServerSIO.py
Executable file
@ -0,0 +1,379 @@
|
||||
import sys, os, struct, argparse, logging, shutil, base64, traceback
|
||||
sys.path.append("/MMVC_Trainer")
|
||||
sys.path.append("/MMVC_Trainer/text")
|
||||
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, UploadFile, File, Form
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from pydantic import BaseModel
|
||||
|
||||
from scipy.io.wavfile import write, read
|
||||
|
||||
import socketio
|
||||
from distutils.util import strtobool
|
||||
from datetime import datetime
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from mods.ssl import create_self_signed_cert
|
||||
from mods.VoiceChanger import VoiceChanger
|
||||
# from mods.Whisper import Whisper
|
||||
|
||||
class UvicornSuppressFilter(logging.Filter):
|
||||
def filter(self, record):
|
||||
return False
|
||||
|
||||
logger = logging.getLogger("uvicorn.error")
|
||||
logger.addFilter(UvicornSuppressFilter())
|
||||
# logger.propagate = False
|
||||
logger = logging.getLogger("multipart.multipart")
|
||||
logger.propagate = False
|
||||
|
||||
|
||||
|
||||
class VoiceModel(BaseModel):
|
||||
gpu: int
|
||||
srcId: int
|
||||
dstId: int
|
||||
timestamp: int
|
||||
prefixChunkSize: int
|
||||
buffer: str
|
||||
|
||||
|
||||
class MyCustomNamespace(socketio.AsyncNamespace):
|
||||
def __init__(self, namespace):
|
||||
super().__init__(namespace)
|
||||
|
||||
def loadModel(self, config, model):
|
||||
if hasattr(self, 'voiceChanger') == True:
|
||||
self.voiceChanger.destroy()
|
||||
self.voiceChanger = VoiceChanger(config, model)
|
||||
|
||||
# def loadWhisperModel(self, model):
|
||||
# self.whisper = Whisper()
|
||||
# self.whisper.loadModel("tiny")
|
||||
# print("load")
|
||||
|
||||
def changeVoice(self, gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData):
|
||||
# if hasattr(self, 'whisper') == True:
|
||||
# self.whisper.addData(unpackedData)
|
||||
|
||||
return self.voiceChanger.on_request(gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
|
||||
# def transcribe(self):
|
||||
# if hasattr(self, 'whisper') == True:
|
||||
# self.whisper.transcribe(0)
|
||||
# else:
|
||||
# print("whisper not found")
|
||||
|
||||
|
||||
def on_connect(self, sid, environ):
|
||||
# print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||||
pass
|
||||
|
||||
async def on_request_message(self, sid, msg):
|
||||
# print("on_request_message", torch.cuda.memory_allocated())
|
||||
gpu = int(msg[0])
|
||||
srcId = int(msg[1])
|
||||
dstId = int(msg[2])
|
||||
timestamp = int(msg[3])
|
||||
prefixChunkSize = int(msg[4])
|
||||
data = msg[5]
|
||||
# print(srcId, dstId, timestamp)
|
||||
unpackedData = np.array(struct.unpack('<%sh'%(len(data) // struct.calcsize('<h') ), data))
|
||||
audio1 = self.changeVoice(gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
|
||||
bin = struct.pack('<%sh'%len(audio1), *audio1)
|
||||
|
||||
await self.emit('response',[timestamp, bin])
|
||||
|
||||
def on_disconnect(self, sid):
|
||||
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
|
||||
pass;
|
||||
|
||||
|
||||
def setupArgParser():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-p", type=int, default=8080, help="port")
|
||||
parser.add_argument("-c", type=str, help="path for the config.json")
|
||||
parser.add_argument("-m", type=str, help="path for the model file")
|
||||
parser.add_argument("--https", type=strtobool, default=False, help="use https")
|
||||
parser.add_argument("--httpsKey", type=str, default="ssl.key", help="path for the key of https")
|
||||
parser.add_argument("--httpsCert", type=str, default="ssl.cert", help="path for the cert of https")
|
||||
parser.add_argument("--httpsSelfSigned", type=strtobool, default=True, help="generate self-signed certificate")
|
||||
parser.add_argument("--colab", type=strtobool, default=False, help="run on colab")
|
||||
return parser
|
||||
|
||||
def printMessage(message, level=0):
|
||||
if level == 0:
|
||||
print(f"\033[17m{message}\033[0m")
|
||||
elif level == 1:
|
||||
print(f"\033[34m {message}\033[0m")
|
||||
elif level == 2:
|
||||
print(f"\033[32m {message}\033[0m")
|
||||
else:
|
||||
print(f"\033[47m {message}\033[0m")
|
||||
|
||||
global app_socketio
|
||||
global app_fastapi
|
||||
|
||||
parser = setupArgParser()
|
||||
args = parser.parse_args()
|
||||
|
||||
printMessage(f"Phase name:{__name__}", level=2)
|
||||
thisFilename = os.path.basename(__file__)[:-3]
|
||||
|
||||
|
||||
if __name__ == thisFilename or args.colab == True:
|
||||
printMessage(f"PHASE3:{__name__}", level=2)
|
||||
PORT = args.p
|
||||
CONFIG = args.c
|
||||
MODEL = args.m
|
||||
|
||||
app_fastapi = FastAPI()
|
||||
app_fastapi.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
app_fastapi.mount("/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
sio = socketio.AsyncServer(
|
||||
async_mode='asgi',
|
||||
cors_allowed_origins='*'
|
||||
)
|
||||
namespace = MyCustomNamespace('/test')
|
||||
sio.register_namespace(namespace)
|
||||
if CONFIG and MODEL:
|
||||
namespace.loadModel(CONFIG, MODEL)
|
||||
# namespace.loadWhisperModel("base")
|
||||
|
||||
|
||||
app_socketio = socketio.ASGIApp(
|
||||
sio,
|
||||
other_asgi_app=app_fastapi,
|
||||
static_files={
|
||||
'/assets/icons/github.svg': {
|
||||
'filename':'../frontend/dist/assets/icons/github.svg',
|
||||
'content_type':'image/svg+xml'
|
||||
},
|
||||
'': '../frontend/dist',
|
||||
'/': '../frontend/dist/index.html',
|
||||
}
|
||||
)
|
||||
|
||||
@app_fastapi.get("/api/hello")
|
||||
async def index():
|
||||
return {"result": "Index"}
|
||||
|
||||
|
||||
UPLOAD_DIR = "model_upload_dir"
|
||||
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
||||
# Can colab receive post request "ONLY" at root path?
|
||||
@app_fastapi.post("/upload_model_file")
|
||||
async def upload_file(configFile:UploadFile = File(...), modelFile: UploadFile = File(...)):
|
||||
if configFile and modelFile:
|
||||
for file in [modelFile, configFile]:
|
||||
filename = file.filename
|
||||
fileobj = file.file
|
||||
upload_dir = open(os.path.join(UPLOAD_DIR, filename),'wb+')
|
||||
shutil.copyfileobj(fileobj, upload_dir)
|
||||
upload_dir.close()
|
||||
namespace.loadModel(os.path.join(UPLOAD_DIR, configFile.filename), os.path.join(UPLOAD_DIR, modelFile.filename))
|
||||
return {"uploaded files": f"{configFile.filename}, {modelFile.filename} "}
|
||||
return {"Error": "uploaded file is not found."}
|
||||
|
||||
|
||||
@app_fastapi.post("/upload_file")
|
||||
async def post_upload_file(
|
||||
file:UploadFile = File(...),
|
||||
filename: str = Form(...)
|
||||
):
|
||||
|
||||
if file and filename:
|
||||
fileobj = file.file
|
||||
upload_dir = open(os.path.join(UPLOAD_DIR, filename),'wb+')
|
||||
shutil.copyfileobj(fileobj, upload_dir)
|
||||
upload_dir.close()
|
||||
return {"uploaded files": f"{filename} "}
|
||||
return {"Error": "uploaded file is not found."}
|
||||
|
||||
@app_fastapi.post("/load_model")
|
||||
async def post_load_model(
|
||||
modelFilename: str = Form(...),
|
||||
modelFilenameChunkNum: int = Form(...),
|
||||
configFilename: str = Form(...)
|
||||
):
|
||||
|
||||
target_file_name = modelFilename
|
||||
with open(os.path.join(UPLOAD_DIR, target_file_name), "ab") as target_file:
|
||||
for i in range(modelFilenameChunkNum):
|
||||
filename = f"{modelFilename}_{i}"
|
||||
chunk_file_path = os.path.join(UPLOAD_DIR,filename)
|
||||
stored_chunk_file = open(chunk_file_path, 'rb')
|
||||
target_file.write(stored_chunk_file.read())
|
||||
stored_chunk_file.close()
|
||||
os.unlink(chunk_file_path)
|
||||
target_file.close()
|
||||
print(f'File saved to: {target_file_name}')
|
||||
|
||||
print(f'Load: {configFilename}, {target_file_name}')
|
||||
namespace.loadModel(os.path.join(UPLOAD_DIR, configFilename), os.path.join(UPLOAD_DIR, target_file_name))
|
||||
return {"File saved to": f"{target_file_name}"}
|
||||
|
||||
|
||||
|
||||
@app_fastapi.get("/transcribe")
|
||||
def get_transcribe():
|
||||
try:
|
||||
namespace.transcribe()
|
||||
except Exception as e:
|
||||
print("TRANSCRIBE PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
@app_fastapi.post("/test")
|
||||
async def post_test(voice:VoiceModel):
|
||||
try:
|
||||
# print("POST REQUEST PROCESSING....")
|
||||
gpu = voice.gpu
|
||||
srcId = voice.srcId
|
||||
dstId = voice.dstId
|
||||
timestamp = voice.timestamp
|
||||
prefixChunkSize = voice.prefixChunkSize
|
||||
buffer = voice.buffer
|
||||
wav = base64.b64decode(buffer)
|
||||
|
||||
if wav==0:
|
||||
samplerate, data=read("dummy.wav")
|
||||
unpackedData = data
|
||||
else:
|
||||
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
||||
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
||||
|
||||
changedVoice = namespace.changeVoice(gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
||||
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
||||
|
||||
data = {
|
||||
"gpu":gpu,
|
||||
"srcId":srcId,
|
||||
"dstId":dstId,
|
||||
"timestamp":timestamp,
|
||||
"prefixChunkSize":prefixChunkSize,
|
||||
"changedVoiceBase64":changedVoiceBase64
|
||||
}
|
||||
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
except Exception as e:
|
||||
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
|
||||
if __name__ == '__mp_main__':
|
||||
printMessage(f"PHASE2:{__name__}", level=2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
printMessage(f"PHASE1:{__name__}", level=2)
|
||||
|
||||
PORT = args.p
|
||||
CONFIG = args.c
|
||||
MODEL = args.m
|
||||
|
||||
printMessage(f"Start MMVC SocketIO Server", level=0)
|
||||
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
|
||||
|
||||
if args.colab == False:
|
||||
if os.getenv("EX_PORT"):
|
||||
EX_PORT = os.environ["EX_PORT"]
|
||||
printMessage(f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
|
||||
else:
|
||||
printMessage(f"Internal_Port:{PORT}", level=1)
|
||||
|
||||
if os.getenv("EX_IP"):
|
||||
EX_IP = os.environ["EX_IP"]
|
||||
printMessage(f"External_IP:{EX_IP}", level=1)
|
||||
|
||||
# HTTPS key/cert作成
|
||||
if args.https and args.httpsSelfSigned == 1:
|
||||
# HTTPS(おれおれ証明書生成)
|
||||
os.makedirs("./key", exist_ok=True)
|
||||
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
||||
keyname = f"{key_base_name}.key"
|
||||
certname = f"{key_base_name}.cert"
|
||||
create_self_signed_cert(certname, keyname, certargs=
|
||||
{"Country": "JP",
|
||||
"State": "Tokyo",
|
||||
"City": "Chuo-ku",
|
||||
"Organization": "F",
|
||||
"Org. Unit": "F"}, cert_dir="./key")
|
||||
key_path = os.path.join("./key", keyname)
|
||||
cert_path = os.path.join("./key", certname)
|
||||
printMessage(f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
|
||||
elif args.https and args.httpsSelfSigned == 0:
|
||||
# HTTPS
|
||||
key_path = args.httpsKey
|
||||
cert_path = args.httpsCert
|
||||
printMessage(f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
|
||||
else:
|
||||
# HTTP
|
||||
printMessage(f"protocol: HTTP", level=1)
|
||||
|
||||
# アドレス表示
|
||||
if args.https == 1:
|
||||
printMessage(f"open https://<IP>:<PORT>/ with your browser.", level=0)
|
||||
else:
|
||||
printMessage(f"open http://<IP>:<PORT>/ with your browser.", level=0)
|
||||
|
||||
if EX_PORT and EX_IP and args.https == 1:
|
||||
printMessage(f"In many cases it is one of the following", level=1)
|
||||
printMessage(f"https://localhost:{EX_PORT}/", level=1)
|
||||
for ip in EX_IP.strip().split(" "):
|
||||
printMessage(f"https://{ip}:{EX_PORT}/", level=1)
|
||||
elif EX_PORT and EX_IP and args.https == 0:
|
||||
printMessage(f"In many cases it is one of the following", level=1)
|
||||
printMessage(f"http://localhost:{EX_PORT}/", level=1)
|
||||
|
||||
|
||||
# サーバ起動
|
||||
if args.https:
|
||||
# HTTPS サーバ起動
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
reload=True,
|
||||
ssl_keyfile = key_path,
|
||||
ssl_certfile = cert_path,
|
||||
log_level="critical"
|
||||
)
|
||||
else:
|
||||
# HTTP サーバ起動
|
||||
if args.colab == True:
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_fastapi",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
log_level="critical"
|
||||
)
|
||||
else:
|
||||
uvicorn.run(
|
||||
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||
host="0.0.0.0",
|
||||
port=int(PORT),
|
||||
reload=True,
|
||||
log_level="critical"
|
||||
)
|
||||
|
||||
|
87
demo/mods/VoiceChanger.py
Executable file
87
demo/mods/VoiceChanger.py
Executable file
@ -0,0 +1,87 @@
|
||||
import torch
|
||||
from scipy.io.wavfile import write, read
|
||||
import numpy as np
|
||||
import struct, traceback
|
||||
|
||||
import utils
|
||||
import commons
|
||||
from models import SynthesizerTrn
|
||||
from text.symbols import symbols
|
||||
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||
from mel_processing import spectrogram_torch
|
||||
from text import text_to_sequence, cleaned_text_to_sequence
|
||||
|
||||
|
||||
class VoiceChanger():
|
||||
def __init__(self, config, model):
|
||||
self.hps = utils.get_hparams_from_file(config)
|
||||
self.net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model)
|
||||
self.net_g.eval()
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
utils.load_checkpoint( model, self.net_g, None)
|
||||
|
||||
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||||
text_norm = commons.intersperse(text_norm, 0)
|
||||
self.text_norm = torch.LongTensor(text_norm)
|
||||
self.audio_buffer = torch.zeros(1, 0)
|
||||
self.prev_audio = np.zeros(1)
|
||||
|
||||
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})")
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
|
||||
def on_request(self, gpu, srcId, dstId, timestamp, prefixChunkSize, wav):
|
||||
unpackedData = wav
|
||||
convertSize = unpackedData.shape[0] + (prefixChunkSize * 512)
|
||||
|
||||
try:
|
||||
|
||||
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
||||
audio_norm = audio /self.hps.data.max_wav_value
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1)
|
||||
audio_norm = self.audio_buffer[:,-convertSize:]
|
||||
self.audio_buffer = audio_norm
|
||||
|
||||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
sid = torch.LongTensor([int(srcId)])
|
||||
|
||||
data = (self.text_norm , spec, audio_norm, sid)
|
||||
data = TextAudioSpeakerCollate()([data])
|
||||
|
||||
if gpu<0 or self.gpu_num==0 :
|
||||
with torch.no_grad():
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
||||
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
||||
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||
else:
|
||||
with torch.no_grad():
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
||||
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
||||
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||
|
||||
# if len(self.prev_audio) > unpackedData.shape[0]:
|
||||
# prevLastFragment = self.prev_audio[-unpackedData.shape[0]:]
|
||||
# curSecondLastFragment = audio1[-unpackedData.shape[0]*2:-unpackedData.shape[0]]
|
||||
# print("prev, cur", prevLastFragment.shape, curSecondLastFragment.shape)
|
||||
# self.prev_audio = audio1
|
||||
# print("self.prev_audio", self.prev_audio.shape)
|
||||
|
||||
audio1 = audio1[-unpackedData.shape[0]*2:]
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
|
||||
audio1 = audio1.astype(np.int16)
|
||||
return audio1
|
36
demo/mods/Whisper.py
Executable file
36
demo/mods/Whisper.py
Executable file
@ -0,0 +1,36 @@
|
||||
import whisper
|
||||
import numpy as np
|
||||
import torchaudio
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
_MODELS = {
|
||||
"tiny": "/whisper/tiny.pt",
|
||||
"base": "/whisper/base.pt",
|
||||
"small": "/whisper/small.pt",
|
||||
"medium": "/whisper/medium.pt",
|
||||
}
|
||||
|
||||
|
||||
class Whisper():
|
||||
def __init__(self):
|
||||
self.storedSizeFromTry = 0
|
||||
|
||||
def loadModel(self, model):
|
||||
# self.model = whisper.load_model(_MODELS[model], device="cpu")
|
||||
self.model = whisper.load_model(_MODELS[model])
|
||||
self.data = np.zeros(1).astype(np.float)
|
||||
|
||||
def addData(self, unpackedData):
|
||||
self.data = np.concatenate([self.data, unpackedData], 0)
|
||||
|
||||
def transcribe(self, audio):
|
||||
received_data_file = "received_data.wav"
|
||||
write(received_data_file, 24000, self.data.astype(np.int16))
|
||||
source, sr = torchaudio.load(received_data_file)
|
||||
target = torchaudio.functional.resample(source, 24000, 16000)
|
||||
result = self.model.transcribe(received_data_file)
|
||||
print("WHISPER1:::", result["text"])
|
||||
print("WHISPER2:::", result["segments"])
|
||||
self.data = np.zeros(1).astype(np.float)
|
||||
return result["text"]
|
||||
|
24
demo/mods/ssl.py
Executable file
24
demo/mods/ssl.py
Executable file
@ -0,0 +1,24 @@
|
||||
import os
|
||||
from OpenSSL import crypto
|
||||
|
||||
def create_self_signed_cert(certfile, keyfile, certargs, cert_dir="."):
|
||||
C_F = os.path.join(cert_dir, certfile)
|
||||
K_F = os.path.join(cert_dir, keyfile)
|
||||
if not os.path.exists(C_F) or not os.path.exists(K_F):
|
||||
k = crypto.PKey()
|
||||
k.generate_key(crypto.TYPE_RSA, 2048)
|
||||
cert = crypto.X509()
|
||||
cert.get_subject().C = certargs["Country"]
|
||||
cert.get_subject().ST = certargs["State"]
|
||||
cert.get_subject().L = certargs["City"]
|
||||
cert.get_subject().O = certargs["Organization"]
|
||||
cert.get_subject().OU = certargs["Org. Unit"]
|
||||
cert.get_subject().CN = 'Example'
|
||||
cert.set_serial_number(1000)
|
||||
cert.gmtime_adj_notBefore(0)
|
||||
cert.gmtime_adj_notAfter(315360000)
|
||||
cert.set_issuer(cert.get_subject())
|
||||
cert.set_pubkey(k)
|
||||
cert.sign(k, 'sha1')
|
||||
open(C_F, "wb").write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert))
|
||||
open(K_F, "wb").write(crypto.dump_privatekey(crypto.FILETYPE_PEM, k))
|
@ -22,7 +22,12 @@ from mel_processing import spectrogram_torch
|
||||
from text import text_to_sequence, cleaned_text_to_sequence
|
||||
|
||||
class MyCustomNamespace(socketio.Namespace):
|
||||
def __init__(self, namespace, config, model):
|
||||
def __init__(self, namespace):
|
||||
super().__init__(namespace)
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
print("GPU_NUM:",self.gpu_num)
|
||||
|
||||
def __init__old(self, namespace, config, model):
|
||||
super().__init__(namespace)
|
||||
self.hps =utils.get_hparams_from_file(config)
|
||||
self.net_g = SynthesizerTrn(
|
||||
@ -36,12 +41,37 @@ class MyCustomNamespace(socketio.Namespace):
|
||||
print("GPU_NUM:",self.gpu_num)
|
||||
utils.load_checkpoint( model, self.net_g, None)
|
||||
|
||||
def loadModel(self, config, model):
|
||||
self.hps =utils.get_hparams_from_file(config)
|
||||
print("before DELETE:", torch.cuda.memory_allocated())
|
||||
if hasattr(self, 'net_g') == True:
|
||||
print("DELETE MODEL:", torch.cuda.memory_allocated())
|
||||
del self.net_g
|
||||
print("before load", torch.cuda.memory_allocated())
|
||||
self.net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model)
|
||||
self.net_g.eval()
|
||||
utils.load_checkpoint( model, self.net_g, None)
|
||||
print(torch.cuda.memory_allocated())
|
||||
print("after load", torch.cuda.memory_allocated())
|
||||
|
||||
|
||||
|
||||
def on_connect(self, sid, environ):
|
||||
print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||||
# print('[{}] connet env : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , environ))
|
||||
|
||||
def on_load_model(self, sid, msg):
|
||||
print("on_load_model")
|
||||
print(msg)
|
||||
pass
|
||||
|
||||
def on_request_message(self, sid, msg):
|
||||
# print("MESSGaa", msg)
|
||||
print("on_request_message", torch.cuda.memory_allocated())
|
||||
gpu = int(msg[0])
|
||||
srcId = int(msg[1])
|
||||
dstId = int(msg[2])
|
||||
@ -223,7 +253,17 @@ if __name__ == '__main__':
|
||||
|
||||
# SocketIOセットアップ
|
||||
sio = socketio.Server(cors_allowed_origins='*')
|
||||
sio.register_namespace(MyCustomNamespace('/test', CONFIG, MODEL))
|
||||
namespace = MyCustomNamespace('/test')
|
||||
sio.register_namespace(namespace)
|
||||
print("loadmodel1:")
|
||||
namespace.loadModel(CONFIG, MODEL)
|
||||
print("loadmodel2:")
|
||||
namespace.loadModel(CONFIG, MODEL)
|
||||
print("loadmodel3:")
|
||||
namespace.loadModel(CONFIG, MODEL)
|
||||
print("loadmodel4:")
|
||||
namespace.loadModel(CONFIG, MODEL)
|
||||
print("loadmodel5:")
|
||||
app = socketio.WSGIApp(sio,static_files={
|
||||
'': '../frontend/dist',
|
||||
'/': '../frontend/dist/index.html',
|
||||
|
@ -12,32 +12,17 @@ if [[ -e ./setting.json ]]; then
|
||||
echo "カスタムセッティングを使用"
|
||||
cp ./setting.json ../frontend/dist/assets/setting.json
|
||||
else
|
||||
if [ "${TYPE}" = "SOFT_VC" ] ; then
|
||||
cp ../frontend/dist/assets/setting_softvc.json ../frontend/dist/assets/setting.json
|
||||
elif [ "${TYPE}" = "SOFT_VC_FAST_API" ] ; then
|
||||
cp ../frontend/dist/assets/setting_softvc_colab.json ../frontend/dist/assets/setting.json
|
||||
else
|
||||
cp ../frontend/dist/assets/setting_mmvc.json ../frontend/dist/assets/setting.json
|
||||
fi
|
||||
cp ../frontend/dist/assets/setting_mmvc.json ../frontend/dist/assets/setting.json
|
||||
fi
|
||||
|
||||
|
||||
# 起動
|
||||
if [ "${TYPE}" = "SOFT_VC" ] ; then
|
||||
echo "SOFT_VCを起動します"
|
||||
python3 SoftVcServerSIO.py $PARAMS 2>stderr.txt
|
||||
elif [ "${TYPE}" = "SOFT_VC_VERBOSE" ] ; then
|
||||
echo "SOFT_VCを起動します(verbose)"
|
||||
python3 SoftVcServerSIO.py $PARAMS
|
||||
elif [ "${TYPE}" = "SOFT_VC_FAST_API" ] ; then
|
||||
echo "SOFT_VC_FAST_APIを起動します"
|
||||
python3 SoftVcServerFastAPI.py 8080 docker
|
||||
elif [ "${TYPE}" = "MMVC" ] ; then
|
||||
if [ "${TYPE}" = "MMVC" ] ; then
|
||||
echo "MMVCを起動します"
|
||||
python3 serverSIO.py $PARAMS 2>stderr.txt
|
||||
python3 MMVCServerSIO.py $PARAMS 2>stderr.txt
|
||||
elif [ "${TYPE}" = "MMVC_VERBOSE" ] ; then
|
||||
echo "MMVCを起動します(verbose)"
|
||||
python3 serverSIO.py $PARAMS
|
||||
python3 MMVCServerSIO.py $PARAMS
|
||||
fi
|
||||
|
||||
|
||||
|
41
frontend/dist/assets/setting.json
vendored
41
frontend/dist/assets/setting.json
vendored
@ -6,21 +6,44 @@
|
||||
"buffer_size": 1024,
|
||||
"prefix_chunk_size": 24,
|
||||
"chunk_size": 24,
|
||||
"speaker_ids": [100, 107, 101, 102, 103],
|
||||
"speaker_names": ["ずんだもん", "user", "そら", "めたん", "つむぎ"],
|
||||
"speakers": [
|
||||
{
|
||||
"id": 100,
|
||||
"name": "ずんだもん"
|
||||
},
|
||||
{
|
||||
"id": 107,
|
||||
"name": "user"
|
||||
},
|
||||
{
|
||||
"id": 101,
|
||||
"name": "そら"
|
||||
},
|
||||
{
|
||||
"id": 102,
|
||||
"name": "めたん"
|
||||
},
|
||||
{
|
||||
"id": 103,
|
||||
"name": "つむぎ"
|
||||
}
|
||||
],
|
||||
"src_id": 107,
|
||||
"dst_id": 100,
|
||||
"vf_enable": true,
|
||||
"voice_changer_mode": "realtime",
|
||||
"gpu": 0,
|
||||
"available_gpus": [-1, 0, 1, 2, 3, 4],
|
||||
"screen": {
|
||||
"enable_screen": true,
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg"
|
||||
},
|
||||
"avatar": {
|
||||
"enable_avatar": true,
|
||||
"motion_capture_face": true,
|
||||
"motion_capture_upperbody": true,
|
||||
"lip_overwrite_with_voice": true,
|
||||
"enable_avatar": false,
|
||||
"motion_capture_face": false,
|
||||
"motion_capture_upperbody": false,
|
||||
"lip_overwrite_with_voice": false,
|
||||
"avatar_url": "./assets/vrm/zundamon/zundamon.vrm",
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg",
|
||||
"background_color": "#0000dd",
|
||||
"chroma_key": "#0000dd",
|
||||
"avatar_canvas_size": [1280, 720],
|
||||
@ -34,5 +57,9 @@
|
||||
"cross_fade_offset_rate": 0.3,
|
||||
"cross_fade_end_rate": 0.6,
|
||||
"cross_fade_type": 2
|
||||
},
|
||||
"transcribe": {
|
||||
"lang": "日本語(ja-JP)",
|
||||
"expire_time": 5
|
||||
}
|
||||
}
|
||||
|
41
frontend/dist/assets/setting_mmvc.json
vendored
41
frontend/dist/assets/setting_mmvc.json
vendored
@ -6,21 +6,44 @@
|
||||
"buffer_size": 1024,
|
||||
"prefix_chunk_size": 24,
|
||||
"chunk_size": 24,
|
||||
"speaker_ids": [100, 107, 101, 102, 103],
|
||||
"speaker_names": ["ずんだもん", "user", "そら", "めたん", "つむぎ"],
|
||||
"speakers": [
|
||||
{
|
||||
"id": 100,
|
||||
"name": "ずんだもん"
|
||||
},
|
||||
{
|
||||
"id": 107,
|
||||
"name": "user"
|
||||
},
|
||||
{
|
||||
"id": 101,
|
||||
"name": "そら"
|
||||
},
|
||||
{
|
||||
"id": 102,
|
||||
"name": "めたん"
|
||||
},
|
||||
{
|
||||
"id": 103,
|
||||
"name": "つむぎ"
|
||||
}
|
||||
],
|
||||
"src_id": 107,
|
||||
"dst_id": 100,
|
||||
"vf_enable": true,
|
||||
"voice_changer_mode": "realtime",
|
||||
"gpu": 0,
|
||||
"available_gpus": [-1, 0, 1, 2, 3, 4],
|
||||
"screen": {
|
||||
"enable_screen": true,
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg"
|
||||
},
|
||||
"avatar": {
|
||||
"enable_avatar": true,
|
||||
"motion_capture_face": true,
|
||||
"motion_capture_upperbody": true,
|
||||
"lip_overwrite_with_voice": true,
|
||||
"enable_avatar": false,
|
||||
"motion_capture_face": false,
|
||||
"motion_capture_upperbody": false,
|
||||
"lip_overwrite_with_voice": false,
|
||||
"avatar_url": "./assets/vrm/zundamon/zundamon.vrm",
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg",
|
||||
"background_color": "#0000dd",
|
||||
"chroma_key": "#0000dd",
|
||||
"avatar_canvas_size": [1280, 720],
|
||||
@ -34,5 +57,9 @@
|
||||
"cross_fade_offset_rate": 0.3,
|
||||
"cross_fade_end_rate": 0.6,
|
||||
"cross_fade_type": 2
|
||||
},
|
||||
"transcribe": {
|
||||
"lang": "日本語(ja-JP)",
|
||||
"expire_time": 5
|
||||
}
|
||||
}
|
||||
|
2
frontend/dist/index.js
vendored
2
frontend/dist/index.js
vendored
File diff suppressed because one or more lines are too long
21
start2.sh
21
start2.sh
@ -1,7 +1,7 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20221028_220714
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20221103_180651
|
||||
#DOCKER_IMAGE=voice-changer
|
||||
|
||||
|
||||
@ -75,28 +75,11 @@ elif [ "${MODE}" = "MMVC" ]; then
|
||||
# -p ${EX_PORT}:8080 $DOCKER_IMAGE /bin/bash
|
||||
|
||||
fi
|
||||
|
||||
elif [ "${MODE}" = "SOFT_VC" ]; then
|
||||
if [ "${USE_GPU}" = "on" ]; then
|
||||
echo "Start Soft-vc"
|
||||
|
||||
docker run -it --gpus all --shm-size=128M \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||
else
|
||||
echo "Start Soft-vc withou GPU is not supported"
|
||||
fi
|
||||
|
||||
else
|
||||
echo "
|
||||
usage:
|
||||
$0 <MODE> <params...>
|
||||
MODE: select one of ['MMVC_TRAIN', 'MMVC', 'SOFT_VC']
|
||||
MODE: select one of ['MMVC_TRAIN', 'MMVC']
|
||||
" >&2
|
||||
fi
|
||||
|
||||
|
314
start_v0.1.sh
Normal file
314
start_v0.1.sh
Normal file
@ -0,0 +1,314 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20221028_220714
|
||||
#DOCKER_IMAGE=voice-changer
|
||||
|
||||
|
||||
MODE=$1
|
||||
PARAMS=${@:2:($#-1)}
|
||||
|
||||
### DEFAULT VAR ###
|
||||
DEFAULT_EX_PORT=18888
|
||||
DEFAULT_USE_GPU=on # on|off
|
||||
DEFAULT_VERBOSE=off # on|off
|
||||
|
||||
### ENV VAR ###
|
||||
EX_PORT=${EX_PORT:-${DEFAULT_EX_PORT}}
|
||||
USE_GPU=${USE_GPU:-${DEFAULT_USE_GPU}}
|
||||
VERBOSE=${VERBOSE:-${DEFAULT_VERBOSE}}
|
||||
|
||||
#echo $EX_PORT $USE_GPU $VERBOSE
|
||||
|
||||
### INTERNAL SETTING ###
|
||||
TENSORBOARD_PORT=6006
|
||||
SIO_PORT=8080
|
||||
|
||||
|
||||
###
|
||||
if [ "${MODE}" = "MMVC_TRAIN" ]; then
|
||||
echo "トレーニングを開始します"
|
||||
|
||||
docker run -it --gpus all --shm-size=128M \
|
||||
-v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||
-v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||
-v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:6006 $DOCKER_IMAGE "$@"
|
||||
|
||||
elif [ "${MODE}" = "MMVC" ]; then
|
||||
if [ "${USE_GPU}" = "on" ]; then
|
||||
echo "MMVCを起動します(with gpu)"
|
||||
|
||||
docker run -it --gpus all --shm-size=128M \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||
else
|
||||
echo "MMVCを起動します(only cpu)"
|
||||
docker run -it --shm-size=128M \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||
|
||||
# docker run -it --shm-size=128M \
|
||||
# -v `pwd`/vc_resources:/resources \
|
||||
# -e LOCAL_UID=$(id -u $USER) \
|
||||
# -e LOCAL_GID=$(id -g $USER) \
|
||||
# -e EX_IP="`hostname -I`" \
|
||||
# -e EX_PORT=${EX_PORT} \
|
||||
# -e VERBOSE=${VERBOSE} \
|
||||
# --entrypoint="" \
|
||||
# -p ${EX_PORT}:8080 $DOCKER_IMAGE /bin/bash
|
||||
|
||||
fi
|
||||
|
||||
elif [ "${MODE}" = "SOFT_VC" ]; then
|
||||
if [ "${USE_GPU}" = "on" ]; then
|
||||
echo "Start Soft-vc"
|
||||
|
||||
docker run -it --gpus all --shm-size=128M \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||
else
|
||||
echo "Start Soft-vc withou GPU is not supported"
|
||||
fi
|
||||
|
||||
else
|
||||
echo "
|
||||
usage:
|
||||
$0 <MODE> <params...>
|
||||
MODE: select one of ['MMVC_TRAIN', 'MMVC', 'SOFT_VC']
|
||||
" >&2
|
||||
fi
|
||||
|
||||
|
||||
|
||||
|
||||
# echo $EX_PORT
|
||||
|
||||
|
||||
# echo "------"
|
||||
# echo "$@"
|
||||
# echo "------"
|
||||
|
||||
# # usage() {
|
||||
# # echo "
|
||||
# # usage:
|
||||
# # For training
|
||||
# # $0 [-t] -n <exp_name> [-b batch_size] [-r]
|
||||
# # -t: トレーニングモードで実行する場合に指定してください。(train)
|
||||
# # -n: トレーニングの名前です。(name)
|
||||
# # -b: バッチサイズです。(batchsize)
|
||||
# # -r: トレーニング再開の場合に指定してください。(resume)
|
||||
# # For changing voice
|
||||
# # $0 [-v] [-c config] [-m model] [-g on/off]
|
||||
# # -v: ボイスチェンジャーモードで実行する場合に指定してください。(voice changer)
|
||||
# # -c: トレーニングで使用したConfigのファイル名です。(config)
|
||||
# # -m: トレーニング済みのモデルのファイル名です。(model)
|
||||
# # -g: GPU使用/不使用。デフォルトはonなのでGPUを使う場合は指定不要。(gpu)
|
||||
# # -p: port番号
|
||||
# # For help
|
||||
# # $0 [-h]
|
||||
# # -h: show this help
|
||||
# # " >&2
|
||||
# # }
|
||||
# # warn () {
|
||||
# # echo "! ! ! $1 ! ! !"
|
||||
# # exit 1
|
||||
# # }
|
||||
|
||||
|
||||
# # training_flag=false
|
||||
# # name=999_exp
|
||||
# # batch_size=10
|
||||
# # resume_flag=false
|
||||
|
||||
# # voice_change_flag=false
|
||||
# # config=
|
||||
# # model=
|
||||
# # gpu=on
|
||||
# # port=8080
|
||||
# # escape_flag=false
|
||||
|
||||
# # # オプション解析
|
||||
# # while getopts tn:b:rvc:m:g:p:hx OPT; do
|
||||
# # case $OPT in
|
||||
# # t)
|
||||
# # training_flag=true
|
||||
# # ;;
|
||||
# # n)
|
||||
# # name="$OPTARG"
|
||||
# # ;;
|
||||
# # b)
|
||||
# # batch_size="$OPTARG"
|
||||
# # ;;
|
||||
# # r)
|
||||
# # resume_flag=true
|
||||
# # ;;
|
||||
# # v)
|
||||
# # voice_change_flag=true
|
||||
# # ;;
|
||||
# # c)
|
||||
# # config="$OPTARG"
|
||||
# # ;;
|
||||
# # m)
|
||||
# # model="$OPTARG"
|
||||
# # ;;
|
||||
# # g)
|
||||
# # gpu="$OPTARG"
|
||||
# # ;;
|
||||
# # p)
|
||||
# # port="$OPTARG"
|
||||
# # ;;
|
||||
# # h | \?)
|
||||
# # usage && exit 1
|
||||
# # ;;
|
||||
# # x)
|
||||
# # escape_flag=true
|
||||
# # esac
|
||||
# # done
|
||||
|
||||
|
||||
# # # モード解析
|
||||
# # if $training_flag && $voice_change_flag; then
|
||||
# # warn "-t(トレーニングモード) と -v(ボイチェンモード)は同時に指定できません。"
|
||||
# # elif $training_flag; then
|
||||
# # echo "■■■ ト レ ー ニ ン グ モ ー ド ■■■"
|
||||
# # elif $voice_change_flag; then
|
||||
# # echo "■■■ ボ イ チ ェ ン モ ー ド ■■■"
|
||||
# # elif $escape_flag; then
|
||||
# # /bin/bash
|
||||
# # else
|
||||
# # warn "-t(トレーニングモード) と -v(ボイチェンモード)のいずれかを指定してください。"
|
||||
# # fi
|
||||
|
||||
# if [ "${MODE}" = "MMVC_TRAIN_INITIAL" ]; then
|
||||
# echo "トレーニングを開始します"
|
||||
# elif [ "${MODE}" = "MMVC" ]; then
|
||||
# echo "MMVCを起動します"
|
||||
|
||||
# docker run -it --gpus all --shm-size=128M \
|
||||
# -v `pwd`/vc_resources:/resources \
|
||||
# -e LOCAL_UID=$(id -u $USER) \
|
||||
# -e LOCAL_GID=$(id -g $USER) \
|
||||
# -e EX_IP="`hostname -I`" \
|
||||
# -e EX_PORT=${port} \
|
||||
# -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||
|
||||
# elif [ "${MODE}" = "MMVC_VERBOSE" ]; then
|
||||
# echo "MMVCを起動します(verbose)"
|
||||
# elif [ "${MODE}" = "MMVC_CPU" ]; then
|
||||
# echo "MMVCを起動します(CPU)"
|
||||
# elif [ "${MODE}" = "MMVC_CPU_VERBOSE" ]; then
|
||||
# echo "MMVCを起動します(CPU)(verbose)"
|
||||
# elif [ "${MODE}" = "SOFT_VC" ]; then
|
||||
# echo "Start Soft-vc"
|
||||
# elif [ "${MODE}" = "SOFT_VC_VERBOSE" ]; then
|
||||
# echo "Start Soft-vc(verbose)"
|
||||
# else
|
||||
# echo "
|
||||
# usage:
|
||||
# $0 <MODE> <params...>
|
||||
# EX_PORT:
|
||||
# MODE: one of ['MMVC_TRAIN', 'MMVC', 'SOFT_VC']
|
||||
|
||||
# For 'MMVC_TRAIN':
|
||||
# $0 MMVC_TRAIN_INITIAL -n <exp_name> [-b batch_size] [-r]
|
||||
# -n: トレーニングの名前です。(name)
|
||||
# -b: バッチサイズです。(batchsize)
|
||||
# -r: トレーニング再開の場合に指定してください。(resume)
|
||||
# For 'MMVC'
|
||||
# $0 MMVC [-c config] [-m model] [-g on/off] [-p port] [-v]
|
||||
# -c: トレーニングで使用したConfigのファイル名です。(config)
|
||||
# -m: トレーニング済みのモデルのファイル名です。(model)
|
||||
# -g: GPU使用/不使用。デフォルトはonなのでGPUを使う場合は指定不要。(gpu)
|
||||
# -p: Docker からExposeするport番号
|
||||
# -v: verbose
|
||||
# For 'SOFT_VC'
|
||||
# $0 SOFT_VC [-c config] [-m model] [-g on/off]
|
||||
# -p: port exposed from docker container.
|
||||
# -v: verbose
|
||||
# " >&2
|
||||
# fi
|
||||
|
||||
|
||||
|
||||
# # if $training_flag; then
|
||||
# # if $resume_flag; then
|
||||
# # echo "トレーニングを再開します"
|
||||
# # docker run -it --gpus all --shm-size=128M \
|
||||
# # -v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||
# # -v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||
# # -v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||
# # -v `pwd`/vc_resources:/resources \
|
||||
# # -e LOCAL_UID=$(id -u $USER) \
|
||||
# # -e LOCAL_GID=$(id -g $USER) \
|
||||
# # -p ${TENSORBOARD_PORT}:6006 $DOCKER_IMAGE -t -b ${batch_size} -r
|
||||
# # else
|
||||
# # echo "トレーニングを開始します"
|
||||
# # docker run -it --gpus all --shm-size=128M \
|
||||
# # -v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||
# # -v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||
# # -v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||
# # -v `pwd`/vc_resources:/resources \
|
||||
# # -e LOCAL_UID=$(id -u $USER) \
|
||||
# # -e LOCAL_GID=$(id -g $USER) \
|
||||
# # -p ${TENSORBOARD_PORT}:6006 $DOCKER_IMAGE -t -b ${batch_size}
|
||||
# # fi
|
||||
# # fi
|
||||
|
||||
# # if $voice_change_flag; then
|
||||
# # if [[ -z "$config" ]]; then
|
||||
# # warn "コンフィグファイル(-c)を指定してください"
|
||||
# # fi
|
||||
# # if [[ -z "$model" ]]; then
|
||||
# # warn "モデルファイル(-m)を指定してください"
|
||||
# # fi
|
||||
# # if [ "${gpu}" = "on" ]; then
|
||||
# # echo "GPUをマウントして起動します。"
|
||||
|
||||
# # docker run -it --gpus all --shm-size=128M \
|
||||
# # -v `pwd`/vc_resources:/resources \
|
||||
# # -e LOCAL_UID=$(id -u $USER) \
|
||||
# # -e LOCAL_GID=$(id -g $USER) \
|
||||
# # -e EX_IP="`hostname -I`" \
|
||||
# # -e EX_PORT=${port} \
|
||||
# # -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||
# # elif [ "${gpu}" = "off" ]; then
|
||||
# # echo "CPUのみで稼働します。GPUは使用できません。"
|
||||
# # docker run -it --shm-size=128M \
|
||||
# # -v `pwd`/vc_resources:/resources \
|
||||
# # -e LOCAL_UID=$(id -u $USER) \
|
||||
# # -e LOCAL_GID=$(id -g $USER) \
|
||||
# # -e EX_IP="`hostname -I`" \
|
||||
# # -e EX_PORT=${port} \
|
||||
# # -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||
# # else
|
||||
# # echo ${gpu}
|
||||
# # warn "-g は onかoffで指定して下さい。"
|
||||
|
||||
# # fi
|
||||
|
||||
|
||||
# # fi
|
||||
|
||||
|
@ -1,26 +1,49 @@
|
||||
{
|
||||
"app_title": "voice-changer",
|
||||
"majar_mode": "docker",
|
||||
"voice_changer_server_url": "./test",
|
||||
"voice_changer_server_url": "/test",
|
||||
"sample_rate": 48000,
|
||||
"buffer_size": 1024,
|
||||
"prefix_chunk_size": 24,
|
||||
"chunk_size": 24,
|
||||
"speaker_ids": [100, 107, 101, 102, 103],
|
||||
"speaker_names": ["ずんだもん", "user", "そら", "めたん", "つむぎ"],
|
||||
"speakers": [
|
||||
{
|
||||
"id": 100,
|
||||
"name": "ずんだもん"
|
||||
},
|
||||
{
|
||||
"id": 107,
|
||||
"name": "user"
|
||||
},
|
||||
{
|
||||
"id": 101,
|
||||
"name": "そら"
|
||||
},
|
||||
{
|
||||
"id": 102,
|
||||
"name": "めたん"
|
||||
},
|
||||
{
|
||||
"id": 103,
|
||||
"name": "つむぎ"
|
||||
}
|
||||
],
|
||||
"src_id": 107,
|
||||
"dst_id": 100,
|
||||
"vf_enable": true,
|
||||
"voice_changer_mode": "realtime",
|
||||
"gpu": 0,
|
||||
"available_gpus": [-1, 0, 1, 2, 3, 4],
|
||||
"screen": {
|
||||
"enable_screen": true,
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg"
|
||||
},
|
||||
"avatar": {
|
||||
"enable_avatar": true,
|
||||
"motion_capture_face": true,
|
||||
"motion_capture_upperbody": true,
|
||||
"lip_overwrite_with_voice": true,
|
||||
"enable_avatar": false,
|
||||
"motion_capture_face": false,
|
||||
"motion_capture_upperbody": false,
|
||||
"lip_overwrite_with_voice": false,
|
||||
"avatar_url": "./assets/vrm/zundamon/zundamon.vrm",
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg",
|
||||
"background_color": "#0000dd",
|
||||
"chroma_key": "#0000dd",
|
||||
"avatar_canvas_size": [1280, 720],
|
||||
@ -34,5 +57,9 @@
|
||||
"cross_fade_offset_rate": 0.3,
|
||||
"cross_fade_end_rate": 0.6,
|
||||
"cross_fade_type": 2
|
||||
},
|
||||
"transcribe": {
|
||||
"lang": "日本語(ja-JP)",
|
||||
"expire_time": 5
|
||||
}
|
||||
}
|
||||
|
@ -4,23 +4,46 @@
|
||||
"voice_changer_server_url": "/test",
|
||||
"sample_rate": 48000,
|
||||
"buffer_size": 1024,
|
||||
"prefix_chunk_size": 36,
|
||||
"chunk_size": 36,
|
||||
"speaker_ids": [100, 107, 101, 102, 103],
|
||||
"speaker_names": ["ずんだもん", "user", "そら", "めたん", "つむぎ"],
|
||||
"prefix_chunk_size": 24,
|
||||
"chunk_size": 24,
|
||||
"speakers": [
|
||||
{
|
||||
"id": 100,
|
||||
"name": "ずんだもん"
|
||||
},
|
||||
{
|
||||
"id": 107,
|
||||
"name": "user"
|
||||
},
|
||||
{
|
||||
"id": 101,
|
||||
"name": "そら"
|
||||
},
|
||||
{
|
||||
"id": 102,
|
||||
"name": "めたん"
|
||||
},
|
||||
{
|
||||
"id": 103,
|
||||
"name": "つむぎ"
|
||||
}
|
||||
],
|
||||
"src_id": 107,
|
||||
"dst_id": 100,
|
||||
"vf_enable": true,
|
||||
"voice_changer_mode": "realtime",
|
||||
"gpu": 0,
|
||||
"available_gpus": [-1, 0, 1, 2, 3, 4],
|
||||
"screen": {
|
||||
"enable_screen": true,
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg"
|
||||
},
|
||||
"avatar": {
|
||||
"enable_avatar": true,
|
||||
"motion_capture_face": true,
|
||||
"motion_capture_upperbody": true,
|
||||
"lip_overwrite_with_voice": true,
|
||||
"enable_avatar": false,
|
||||
"motion_capture_face": false,
|
||||
"motion_capture_upperbody": false,
|
||||
"lip_overwrite_with_voice": false,
|
||||
"avatar_url": "./assets/vrm/zundamon/zundamon.vrm",
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg",
|
||||
"background_color": "#0000dd",
|
||||
"chroma_key": "#0000dd",
|
||||
"avatar_canvas_size": [1280, 720],
|
||||
@ -34,5 +57,9 @@
|
||||
"cross_fade_offset_rate": 0.3,
|
||||
"cross_fade_end_rate": 0.6,
|
||||
"cross_fade_type": 2
|
||||
},
|
||||
"transcribe": {
|
||||
"lang": "日本語(ja-JP)",
|
||||
"expire_time": 5
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM dannadori/voice-changer-internal:20221028_220538 as front
|
||||
FROM dannadori/voice-changer-internal:20221103_180551 as front
|
||||
FROM debian:bullseye-slim as base
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -8,7 +8,7 @@ RUN apt-get install -y python3-pip git
|
||||
RUN apt-get install -y espeak
|
||||
RUN apt-get install -y cmake
|
||||
|
||||
RUN git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.1.3
|
||||
#RUN git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.1.3
|
||||
|
||||
RUN pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
|
||||
@ -24,17 +24,20 @@ RUN pip install tqdm==4.64.0
|
||||
RUN pip install retry==0.9.2
|
||||
RUN pip install psutil==5.9.1
|
||||
RUN pip install python-socketio==5.7.1
|
||||
RUN pip install eventlet==0.33.1
|
||||
RUN pip install matplotlib==3.5.3
|
||||
|
||||
RUN pip install fastapi==0.85.0
|
||||
RUN pip install python-multipart==0.0.5
|
||||
RUN pip install uvicorn==0.18.3
|
||||
RUN pip install websockets==10.4
|
||||
RUN pip install pyOpenSSL==22.0.0
|
||||
|
||||
RUN pip install pyopenjtalk==0.2.0
|
||||
RUN pip install tensorboard==2.10.0
|
||||
RUN pip install matplotlib==3.5.3
|
||||
|
||||
RUN pip install pyOpenSSL==22.0.0
|
||||
|
||||
WORKDIR /MMVC_Trainer/monotonic_align
|
||||
RUN cythonize -3 -i core.pyx \
|
||||
&& mv core.cpython-39-x86_64-linux-gnu.so monotonic_align/
|
||||
# WORKDIR /MMVC_Trainer/monotonic_align
|
||||
# RUN cythonize -3 -i core.pyx \
|
||||
# && mv core.cpython-39-x86_64-linux-gnu.so monotonic_align/
|
||||
|
||||
|
||||
FROM debian:bullseye-slim
|
||||
@ -64,12 +67,11 @@ COPY --from=front --chmod=777 /voice-changer-internal/frontend/dist /voice-chang
|
||||
COPY --from=front --chmod=777 /voice-changer-internal/voice-change-service /voice-changer-internal/voice-change-service
|
||||
RUN chmod 0777 /voice-changer-internal/voice-change-service
|
||||
|
||||
##### Soft VC
|
||||
COPY --from=front /hubert /hubert
|
||||
COPY --from=front /acoustic-model /acoustic-model
|
||||
COPY --from=front /hifigan /hifigan
|
||||
|
||||
COPY --from=front /models /models
|
||||
# ##### Soft VC
|
||||
# COPY --from=front /hubert /hubert
|
||||
# COPY --from=front /acoustic-model /acoustic-model
|
||||
# COPY --from=front /hifigan /hifigan
|
||||
# COPY --from=front /models /models
|
||||
|
||||
|
||||
ENTRYPOINT ["/bin/bash", "setup.sh"]
|
||||
|
@ -17,23 +17,7 @@ echo "------"
|
||||
|
||||
|
||||
# 起動
|
||||
if [ "${MODE}" = "SOFT_VC" ] ; then
|
||||
cd /voice-changer-internal/voice-change-service
|
||||
|
||||
cp -r /resources/* .
|
||||
if [[ -e ./setting.json ]]; then
|
||||
cp ./setting.json ../frontend/dist/assets/setting.json
|
||||
else
|
||||
cp ../frontend/dist/assets/setting_softvc.json ../frontend/dist/assets/setting.json
|
||||
fi
|
||||
if [ "${VERBOSE}" = "on" ]; then
|
||||
echo "SOFT_VCを起動します(verbose)"
|
||||
python3 SoftVcServerSIO.py $PARAMS
|
||||
else
|
||||
echo "SOFT_VCを起動します"
|
||||
python3 SoftVcServerSIO.py $PARAMS 2>stderr.txt
|
||||
fi
|
||||
elif [ "${MODE}" = "MMVC" ] ; then
|
||||
if [ "${MODE}" = "MMVC" ] ; then
|
||||
cd /voice-changer-internal/voice-change-service
|
||||
|
||||
cp -r /resources/* .
|
||||
@ -45,10 +29,10 @@ elif [ "${MODE}" = "MMVC" ] ; then
|
||||
|
||||
if [ "${VERBOSE}" = "on" ]; then
|
||||
echo "MMVCを起動します(verbose)"
|
||||
python3 serverSIO.py $PARAMS
|
||||
python3 MMVCServerSIO.py $PARAMS
|
||||
else
|
||||
echo "MMVCを起動します"
|
||||
python3 serverSIO.py $PARAMS 2>stderr.txt
|
||||
python3 MMVCServerSIO.py $PARAMS $PARAMS 2>stderr.txt
|
||||
fi
|
||||
elif [ "${MODE}" = "MMVC_TRAIN" ] ; then
|
||||
python3 create_dataset_jtalk.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt
|
||||
|
Loading…
x
Reference in New Issue
Block a user