mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
WIP: refactor, separate mmvc main process
This commit is contained in:
parent
6f97320c0d
commit
bbb068be72
@ -28,8 +28,7 @@ class MMVC_Namespace(socketio.AsyncNamespace):
|
||||
print(data)
|
||||
await self.emit('response', [timestamp, 0], to=sid)
|
||||
else:
|
||||
# tuple of short
|
||||
unpackedData = struct.unpack('<%sh' % (len(data) // struct.calcsize('<h')), data)
|
||||
unpackedData = np.array(struct.unpack('<%sh' % (len(data) // struct.calcsize('<h')), data)).astype(np.int16)
|
||||
|
||||
# audio1, perf = self.voiceChangerManager.changeVoice(unpackedData)
|
||||
res = self.voiceChangerManager.changeVoice(unpackedData)
|
||||
|
@ -1,18 +1,14 @@
|
||||
import sys
|
||||
sys.path.append("MMVC_Client/python")
|
||||
import os
|
||||
from dataclasses import dataclass, asdict
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import onnxruntime
|
||||
import pyworld as pw
|
||||
|
||||
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
||||
from models import SynthesizerTrn
|
||||
|
||||
from const import ERROR_NO_ONNX_SESSION, TMP_DIR
|
||||
|
||||
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
||||
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
@ -23,15 +19,8 @@ class MMVCv15Settings():
|
||||
srcId: int = 0
|
||||
dstId: int = 101
|
||||
|
||||
inputSampleRate: int = 24000 # 48000 or 24000
|
||||
|
||||
crossFadeOffsetRate: float = 0.1
|
||||
crossFadeEndRate: float = 0.9
|
||||
crossFadeOverlapSize: int = 4096
|
||||
|
||||
f0Factor: float = 1.0
|
||||
f0Detector: str = "dio" # dio or harvest
|
||||
recordIO: int = 0 # 0:off, 1:on
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str = ""
|
||||
@ -39,28 +28,23 @@ class MMVCv15Settings():
|
||||
configFile: str = ""
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "srcId", "dstId", "inputSampleRate", "crossFadeOverlapSize", "recordIO"]
|
||||
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "f0Factor"]
|
||||
intData = ["gpu", "srcId", "dstId"]
|
||||
floatData = ["f0Factor"]
|
||||
strData = ["framework", "f0Detector"]
|
||||
|
||||
|
||||
class MMVCv15:
|
||||
def __init__(self):
|
||||
# 初期化
|
||||
self.settings = MMVCv15Settings()
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.text_norm = torch.LongTensor([0, 6, 0])
|
||||
self.audio_buffer = torch.zeros(1, 0)
|
||||
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
||||
|
||||
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
||||
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
||||
self.settings.configFile = config
|
||||
self.hps = get_hparams_from_file(config)
|
||||
|
||||
if pyTorch_model_file != None:
|
||||
self.settings.pyTorchModelFile = pyTorch_model_file
|
||||
if onnx_model_file:
|
||||
@ -88,6 +72,7 @@ class MMVCv15:
|
||||
)
|
||||
self.net_g.eval()
|
||||
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
@ -99,23 +84,6 @@ class MMVCv15:
|
||||
)
|
||||
return self.get_info()
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
def update_setteings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
||||
if val == "CUDAExecutionProvider":
|
||||
@ -133,49 +101,64 @@ class MMVCv15:
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
||||
self.unpackedData_length = 0
|
||||
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
setattr(self.settings, key, str(val))
|
||||
else:
|
||||
print(f"{key} is not mutalbe variable!")
|
||||
return False
|
||||
|
||||
return self.get_info()
|
||||
return True
|
||||
|
||||
def _generate_input(self, unpackedData: any, convertSize: int):
|
||||
# 今回変換するデータをテンソルとして整形する
|
||||
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
|
||||
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
||||
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
||||
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
|
||||
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出
|
||||
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
|
||||
self.audio_buffer = audio_norm
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
|
||||
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
|
||||
if self.settings.f0Detector == "dio":
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
def _get_f0(self, detector: str, newData: any):
|
||||
|
||||
audio_norm_np = newData.astype(np.float64)
|
||||
if detector == "dio":
|
||||
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
||||
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
||||
else:
|
||||
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
||||
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
||||
f0 = torch.from_numpy(f0.astype(np.float32))
|
||||
return f0
|
||||
|
||||
def _get_spec(self, newData: any):
|
||||
audio = torch.FloatTensor(newData)
|
||||
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
||||
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
||||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||
center=False)
|
||||
# dispose_stft_specs = 2
|
||||
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
|
||||
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec
|
||||
|
||||
def generate_input(self, newData: any, convertSize: int):
|
||||
newData = newData.astype(np.float32)
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
|
||||
|
||||
f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # f0 生成
|
||||
spec = self._get_spec(self.audio_buffer)
|
||||
sid = torch.LongTensor([int(self.settings.srcId)])
|
||||
|
||||
# data = (self.text_norm, spec, audio_norm, sid)
|
||||
# data = TextAudioSpeakerCollate()([data])
|
||||
data = TextAudioSpeakerCollate(
|
||||
sample_rate=self.hps.data.sampling_rate,
|
||||
hop_size=self.hps.data.hop_length,
|
||||
@ -184,17 +167,13 @@ class MMVCv15:
|
||||
|
||||
return data
|
||||
|
||||
def _onnx_inference(self, data, inputSize):
|
||||
def _onnx_inference(self, data):
|
||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
||||
print("[Voice Changer] No ONNX session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
|
||||
# sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
||||
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
||||
# if spec.size()[2] >= 8:
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
@ -208,107 +187,38 @@ class MMVCv15:
|
||||
"sid_src": sid_src.numpy(),
|
||||
"sid_tgt": sid_tgt1.numpy()
|
||||
})[0][0, 0] * self.hps.data.max_wav_value
|
||||
return audio1
|
||||
|
||||
if hasattr(self, 'np_prev_audio1') == True:
|
||||
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
||||
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
|
||||
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
||||
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
||||
# print(">>>>>>>>>>>", -1*(inputSize + overlapSize) , -1*inputSize)
|
||||
powered_prev = prev_overlap * self.np_prev_strength
|
||||
powered_cur = cur_overlap * self.np_cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
cur = audio1[-1 * inputSize:-1 * overlapSize]
|
||||
result = np.concatenate([powered_result, cur], axis=0)
|
||||
else:
|
||||
result = np.zeros(1).astype(np.int16)
|
||||
self.np_prev_audio1 = audio1
|
||||
return result
|
||||
|
||||
def _pyTorch_inference(self, data, inputSize):
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") == False or self.net_g == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
with torch.no_grad():
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
spec = spec.cpu()
|
||||
spec_lengths = spec_lengths.cpu()
|
||||
sid_src = sid_src.cpu()
|
||||
sin = sin.cpu()
|
||||
d = tuple([d[:1].cpu() for d in d])
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).cpu()
|
||||
|
||||
audio1 = self.net_g.cpu().voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
||||
|
||||
if self.prev_strength.device != torch.device('cpu'):
|
||||
print(f"prev_strength move from {self.prev_strength.device} to cpu")
|
||||
self.prev_strength = self.prev_strength.cpu()
|
||||
if self.cur_strength.device != torch.device('cpu'):
|
||||
print(f"cur_strength move from {self.cur_strength.device} to cpu")
|
||||
self.cur_strength = self.cur_strength.cpu()
|
||||
|
||||
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。
|
||||
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
||||
prev_overlap = self.prev_audio1[-1 * overlapSize:]
|
||||
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
||||
powered_prev = prev_overlap * self.prev_strength
|
||||
powered_cur = cur_overlap * self.cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
||||
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
|
||||
|
||||
else:
|
||||
cur = audio1[-2 * inputSize:-1 * inputSize]
|
||||
result = cur
|
||||
|
||||
self.prev_audio1 = audio1
|
||||
result = result.cpu().float().numpy()
|
||||
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
with torch.no_grad():
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
spec = spec.cuda(self.settings.gpu)
|
||||
spec_lengths = spec_lengths.cuda(self.settings.gpu)
|
||||
sid_src = sid_src.cuda(self.settings.gpu)
|
||||
sin = sin.cuda(self.settings.gpu)
|
||||
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
# audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src,
|
||||
# sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
|
||||
with torch.no_grad():
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
spec = spec.to(dev)
|
||||
spec_lengths = spec_lengths.to(dev)
|
||||
sid_src = sid_src.to(dev)
|
||||
sin = sin.to(dev)
|
||||
d = tuple([d[:1].to(dev) for d in d])
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
||||
|
||||
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sin, d,
|
||||
sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
||||
|
||||
if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
|
||||
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
|
||||
self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
|
||||
if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
|
||||
print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
|
||||
self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
|
||||
|
||||
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
|
||||
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
||||
prev_overlap = self.prev_audio1[-1 * overlapSize:]
|
||||
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
||||
powered_prev = prev_overlap * self.prev_strength
|
||||
powered_cur = cur_overlap * self.cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
# print(overlapSize, prev_overlap.shape, cur_overlap.shape, self.prev_strength.shape, self.cur_strength.shape)
|
||||
# print(self.prev_audio1.shape, audio1.shape, inputSize, overlapSize)
|
||||
|
||||
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
||||
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
|
||||
|
||||
else:
|
||||
cur = audio1[-2 * inputSize:-1 * inputSize]
|
||||
result = cur
|
||||
self.prev_audio1 = audio1
|
||||
|
||||
result = result.cpu().float().numpy()
|
||||
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
||||
result = audio1.float().cpu().numpy()
|
||||
return result
|
||||
|
||||
def inference(self, data):
|
||||
if self.settings.framework == "ONNX":
|
||||
audio = self._onnx_inference(data)
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
return audio
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
|
@ -2,7 +2,7 @@
|
||||
import sys
|
||||
sys.path.append("MMVC_Client/python")
|
||||
|
||||
from const import ERROR_NO_ONNX_SESSION, TMP_DIR
|
||||
from const import TMP_DIR
|
||||
import torch
|
||||
import os
|
||||
import traceback
|
||||
@ -10,13 +10,6 @@ import numpy as np
|
||||
from dataclasses import dataclass, asdict
|
||||
import resampy
|
||||
|
||||
import onnxruntime
|
||||
|
||||
from symbols import symbols
|
||||
from models import SynthesizerTrn
|
||||
|
||||
import pyworld as pw
|
||||
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
||||
|
||||
from voice_changer.MMVCv15 import MMVCv15
|
||||
from voice_changer.IORecorder import IORecorder
|
||||
@ -27,17 +20,6 @@ import time
|
||||
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
|
||||
import wave
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
import pylab
|
||||
import librosa
|
||||
import librosa.display
|
||||
SAMPLING_RATE = 24000
|
||||
|
||||
|
||||
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
|
||||
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
|
||||
STREAM_ANALYZE_FILE_DIO = os.path.join(TMP_DIR, "analyze-dio.png")
|
||||
@ -46,33 +28,18 @@ STREAM_ANALYZE_FILE_HARVEST = os.path.join(TMP_DIR, "analyze-harvest.png")
|
||||
|
||||
@dataclass
|
||||
class VocieChangerSettings():
|
||||
gpu: int = 0
|
||||
srcId: int = 0
|
||||
dstId: int = 101
|
||||
|
||||
inputSampleRate: int = 24000 # 48000 or 24000
|
||||
|
||||
crossFadeOffsetRate: float = 0.1
|
||||
crossFadeEndRate: float = 0.9
|
||||
crossFadeOverlapSize: int = 4096
|
||||
|
||||
f0Factor: float = 1.0
|
||||
f0Detector: str = "dio" # dio or harvest
|
||||
recordIO: int = 0 # 0:off, 1:on
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str = ""
|
||||
onnxModelFile: str = ""
|
||||
configFile: str = ""
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "srcId", "dstId", "inputSampleRate", "crossFadeOverlapSize", "recordIO"]
|
||||
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "f0Factor"]
|
||||
strData = ["framework", "f0Detector"]
|
||||
|
||||
|
||||
def readMicrophone(queue, sid, deviceIndex):
|
||||
print("READ MIC", queue, sid, deviceIndex)
|
||||
intData = ["inputSampleRate", "crossFadeOverlapSize", "recordIO"]
|
||||
floatData = ["crossFadeOffsetRate", "crossFadeEndRate"]
|
||||
strData = []
|
||||
|
||||
|
||||
class VoiceChanger():
|
||||
@ -81,7 +48,6 @@ class VoiceChanger():
|
||||
# 初期化
|
||||
self.settings = VocieChangerSettings()
|
||||
self.unpackedData_length = 0
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
self.currentCrossFadeOffsetRate = 0
|
||||
self.currentCrossFadeEndRate = 0
|
||||
@ -90,88 +56,22 @@ class VoiceChanger():
|
||||
self.voiceChanger = MMVCv15()
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.text_norm = torch.LongTensor([0, 6, 0])
|
||||
self.prev_audio = np.zeros(1)
|
||||
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
||||
|
||||
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
||||
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
||||
self.settings.configFile = config
|
||||
self.hps = get_hparams_from_file(config)
|
||||
if pyTorch_model_file != None:
|
||||
self.settings.pyTorchModelFile = pyTorch_model_file
|
||||
if onnx_model_file:
|
||||
self.settings.onnxModelFile = onnx_model_file
|
||||
|
||||
# PyTorchモデル生成
|
||||
if pyTorch_model_file != None:
|
||||
self.net_g = SynthesizerTrn(
|
||||
spec_channels=self.hps.data.filter_length // 2 + 1,
|
||||
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
inter_channels=self.hps.model.inter_channels,
|
||||
hidden_channels=self.hps.model.hidden_channels,
|
||||
upsample_rates=self.hps.model.upsample_rates,
|
||||
upsample_initial_channel=self.hps.model.upsample_initial_channel,
|
||||
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
|
||||
n_flow=self.hps.model.n_flow,
|
||||
dec_out_channels=1,
|
||||
dec_kernel_size=7,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
gin_channels=self.hps.model.gin_channels,
|
||||
requires_grad_pe=self.hps.requires_grad.pe,
|
||||
requires_grad_flow=self.hps.requires_grad.flow,
|
||||
requires_grad_text_enc=self.hps.requires_grad.text_enc,
|
||||
requires_grad_dec=self.hps.requires_grad.dec
|
||||
)
|
||||
self.net_g.eval()
|
||||
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
ort_options = onnxruntime.SessionOptions()
|
||||
ort_options.intra_op_num_threads = 8
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
onnx_model_file,
|
||||
providers=providers
|
||||
)
|
||||
return self.get_info()
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
||||
return self.voiceChanger.loadModel(config, pyTorch_model_file, onnx_model_file)
|
||||
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
data.update(self.voiceChanger.get_info())
|
||||
return data
|
||||
|
||||
def update_setteings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
||||
if val == "CUDAExecutionProvider":
|
||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||
self.settings.gpu = 0
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
||||
else:
|
||||
self.onnx_session.set_providers(providers=[val])
|
||||
elif key in self.settings.intData:
|
||||
if key in self.settings.intData:
|
||||
setattr(self.settings, key, int(val))
|
||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
||||
providers = self.onnx_session.get_providers()
|
||||
print("Providers:", providers)
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
||||
self.unpackedData_length = 0
|
||||
if key == "recordIO" and val == 1:
|
||||
@ -194,13 +94,14 @@ class VoiceChanger():
|
||||
|
||||
except Exception as e:
|
||||
print("recordIO exception", e)
|
||||
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
setattr(self.settings, key, str(val))
|
||||
else:
|
||||
print(f"{key} is not mutalbe variable!")
|
||||
ret = self.voiceChanger.update_setteings(key, val)
|
||||
if ret == False:
|
||||
print(f"{key} is not mutalbe variable or unknown variable!")
|
||||
|
||||
return self.get_info()
|
||||
|
||||
@ -234,138 +135,49 @@ class VoiceChanger():
|
||||
if hasattr(self, 'np_prev_audio1') == True:
|
||||
delattr(self, "np_prev_audio1")
|
||||
|
||||
def _get_f0(self, newData: any):
|
||||
|
||||
audio_norm_np = newData.astype(np.float64)
|
||||
if self.settings.f0Detector == "dio":
|
||||
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
||||
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
||||
else:
|
||||
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
||||
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
||||
f0 = torch.from_numpy(f0.astype(np.float32))
|
||||
return f0
|
||||
|
||||
def _get_spec(self, newData: any):
|
||||
audio = torch.FloatTensor(newData)
|
||||
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
||||
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
||||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec
|
||||
|
||||
def _generate_input(self, newData: any, convertSize: int):
|
||||
newData = np.array(newData).astype(np.float32)
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
|
||||
|
||||
f0 = self._get_f0(self.audio_buffer) # f0 生成
|
||||
spec = self._get_spec(self.audio_buffer)
|
||||
sid = torch.LongTensor([int(self.settings.srcId)])
|
||||
|
||||
data = TextAudioSpeakerCollate(
|
||||
sample_rate=self.hps.data.sampling_rate,
|
||||
hop_size=self.hps.data.hop_length,
|
||||
f0_factor=self.settings.f0Factor
|
||||
)([(spec, sid, f0)])
|
||||
|
||||
return data
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
||||
print("[Voice Changer] No ONNX session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"specs": spec.numpy(),
|
||||
"lengths": spec_lengths.numpy(),
|
||||
"sin": sin.numpy(),
|
||||
"d0": d[0][:1].numpy(),
|
||||
"d1": d[1][:1].numpy(),
|
||||
"d2": d[2][:1].numpy(),
|
||||
"d3": d[3][:1].numpy(),
|
||||
"sid_src": sid_src.numpy(),
|
||||
"sid_tgt": sid_tgt1.numpy()
|
||||
})[0][0, 0] * self.hps.data.max_wav_value
|
||||
return audio1
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") == False or self.net_g == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
with torch.no_grad():
|
||||
spec, spec_lengths, sid_src, sin, d = data
|
||||
spec = spec.to(dev)
|
||||
spec_lengths = spec_lengths.to(dev)
|
||||
sid_src = sid_src.to(dev)
|
||||
sin = sin.to(dev)
|
||||
d = tuple([d[:1].to(dev) for d in d])
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
||||
|
||||
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
||||
result = audio1.float().cpu().numpy()
|
||||
return result
|
||||
|
||||
# receivedData: tuple of short
|
||||
def on_request(self, receivedData: any):
|
||||
|
||||
# 前処理
|
||||
with Timer("pre-process") as t:
|
||||
|
||||
if self.settings.inputSampleRate != 24000:
|
||||
newData = resampy.resample(receivedData, self.settings.inputSampleRate, 24000)
|
||||
else:
|
||||
newData = receivedData
|
||||
convertSize = len(newData) + min(self.settings.crossFadeOverlapSize, len(newData))
|
||||
|
||||
inputSize = newData.shape[0]
|
||||
convertSize = inputSize + min(self.settings.crossFadeOverlapSize, inputSize)
|
||||
# print(convertSize, unpackedData.shape[0])
|
||||
if convertSize < 8192:
|
||||
convertSize = 8192
|
||||
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||||
convertSize = convertSize + (128 - (convertSize % 128))
|
||||
|
||||
self._generate_strength(len(newData))
|
||||
data = self._generate_input(newData, convertSize)
|
||||
self._generate_strength(inputSize)
|
||||
data = self.voiceChanger.generate_input(newData, convertSize)
|
||||
preprocess_time = t.secs
|
||||
|
||||
# 変換処理
|
||||
with Timer("main-process") as t:
|
||||
try:
|
||||
if self.settings.framework == "ONNX":
|
||||
audio = self._onnx_inference(data)
|
||||
# result = self.voiceChanger._onnx_inference(data, unpackedData.shape[0])
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
# result = self.voiceChanger._pyTorch_inference(data, unpackedData.shape[0])
|
||||
|
||||
inputSize = len(newData)
|
||||
# Inference
|
||||
audio = self.voiceChanger.inference(data)
|
||||
|
||||
# CrossFade
|
||||
if hasattr(self, 'np_prev_audio1') == True:
|
||||
np.set_printoptions(threshold=10000)
|
||||
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
||||
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
|
||||
cur_overlap = audio[-1 * (inputSize + overlapSize):-1 * inputSize]
|
||||
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
||||
# print(">>>>>>>>>>>", -1 * (inputSize + overlapSize), -1 * inputSize, self.np_prev_audio1.shape, overlapSize)
|
||||
powered_prev = prev_overlap * self.np_prev_strength
|
||||
powered_cur = cur_overlap * self.np_cur_strength
|
||||
powered_result = powered_prev + powered_cur
|
||||
|
||||
cur = audio[-1 * inputSize:-1 * overlapSize]
|
||||
result = np.concatenate([powered_result, cur], axis=0)
|
||||
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
||||
# print(">>>>>>>>>>>", -1 * (inputSize + overlapSize), -1 * inputSize, self.np_prev_audio1.shape, overlapSize)
|
||||
|
||||
else:
|
||||
result = np.zeros(1).astype(np.int16)
|
||||
self.np_prev_audio1 = audio
|
||||
@ -378,18 +190,16 @@ class VoiceChanger():
|
||||
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
||||
mainprocess_time = t.secs
|
||||
|
||||
# 後処理
|
||||
with Timer("post-process") as t:
|
||||
|
||||
result = result.astype(np.int16)
|
||||
# print("on_request result size:",result.shape)
|
||||
if self.settings.recordIO == 1:
|
||||
# self.stream_in.write(unpackedData.astype(np.int16).tobytes())
|
||||
# self.stream_out.write(result.tobytes())
|
||||
self.ioRecorder.writeInput(receivedData.astype(np.int16).tobytes())
|
||||
self.ioRecorder.writeOutput(result.tobytes())
|
||||
|
||||
if self.settings.inputSampleRate != 24000:
|
||||
result = resampy.resample(result, 24000, self.settings.inputSampleRate).astype(np.int16)
|
||||
|
||||
if self.settings.recordIO == 1:
|
||||
self.ioRecorder.writeInput(receivedData)
|
||||
self.ioRecorder.writeOutput(result.tobytes())
|
||||
|
||||
postprocess_time = t.secs
|
||||
|
||||
perf = [preprocess_time, mainprocess_time, postprocess_time]
|
||||
|
Loading…
Reference in New Issue
Block a user