mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 13:35:12 +03:00
update
This commit is contained in:
parent
f8ed234ada
commit
c510a52b10
158
demo/SoftVcServerFastAPI.py
Executable file
158
demo/SoftVcServerFastAPI.py
Executable file
@ -0,0 +1,158 @@
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
|
||||
import logging
|
||||
from logging.config import dictConfig
|
||||
import os, sys, math, base64, struct, traceback, time
|
||||
|
||||
import torch, torchaudio
|
||||
import numpy as np
|
||||
from scipy.io.wavfile import write, read
|
||||
from datetime import datetime
|
||||
|
||||
args = sys.argv
|
||||
PORT = args[1]
|
||||
MODE = args[2]
|
||||
|
||||
|
||||
logger = logging.getLogger('uvicorn')
|
||||
app = FastAPI()
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
app.mount("/front", StaticFiles(directory="voice-changer/frontend/dist", html=True), name="static")
|
||||
|
||||
if MODE == "colab":
|
||||
print("ENV: colab")
|
||||
|
||||
hubert_model = torch.hub.load("bshall/hubert:main", "hubert_soft").cuda()
|
||||
acoustic_model = torch.hub.load("bshall/acoustic-model:main", "hubert_soft").cuda()
|
||||
hifigan_model = torch.hub.load("bshall/hifigan:main", "hifigan_hubert_soft").cuda()
|
||||
else:
|
||||
print("ENV: Docker")
|
||||
|
||||
app.mount("/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
sys.path.append("/hubert")
|
||||
from hubert import hubert_discrete, hubert_soft, kmeans100
|
||||
|
||||
sys.path.append("/acoustic-model")
|
||||
from acoustic import hubert_discrete, hubert_soft
|
||||
|
||||
sys.path.append("/hifigan")
|
||||
from hifigan import hifigan
|
||||
|
||||
hubert_model = torch.load("/models/bshall_hubert_main.pt").cuda()
|
||||
acoustic_model = torch.load("/models/bshall_acoustic-model_main.pt").cuda()
|
||||
hifigan_model = torch.load("/models/bshall_hifigan_main.pt").cuda()
|
||||
|
||||
|
||||
def applyVol(i, chunk, vols):
|
||||
curVol = vols[i] / 2
|
||||
if curVol < 0.0001:
|
||||
line = torch.zeros(chunk.size())
|
||||
else:
|
||||
line = torch.ones(chunk.size())
|
||||
|
||||
volApplied = torch.mul(line, chunk)
|
||||
volApplied = volApplied.unsqueeze(0)
|
||||
return volApplied
|
||||
|
||||
|
||||
@app.get("/test")
|
||||
def get_test():
|
||||
try:
|
||||
return request.args.get('query', '')
|
||||
except Exception as e:
|
||||
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
|
||||
|
||||
class VoiceModel(BaseModel):
|
||||
gpu: int
|
||||
srcId: int
|
||||
dstId: int
|
||||
timestamp: int
|
||||
buffer: str
|
||||
|
||||
@app.post("/test")
|
||||
def post_test(voice:VoiceModel):
|
||||
try:
|
||||
print("POST REQUEST PROCESSING....")
|
||||
gpu = voice.gpu
|
||||
srcId = voice.srcId
|
||||
dstId = voice.dstId
|
||||
timestamp = voice.timestamp
|
||||
buffer = voice.buffer
|
||||
wav = base64.b64decode(buffer)
|
||||
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
||||
# received_data_file = f"received_data_{timestamp}.wav"
|
||||
received_data_file = "received_data.wav"
|
||||
write(received_data_file, 24000, unpackedData.astype(np.int16))
|
||||
source, sr = torchaudio.load(received_data_file) # デフォルトでnormalize=Trueがついており、float32に変換して読んでくれるらしいのでこれを使う。https://pytorch.org/audio/stable/backend.html
|
||||
|
||||
source_16k = torchaudio.functional.resample(source, 24000, 16000)
|
||||
source_16k = source_16k.unsqueeze(0).cuda()
|
||||
# SOFT-VC
|
||||
with torch.inference_mode():
|
||||
units = hubert_model.units(source_16k)
|
||||
mel = acoustic_model.generate(units).transpose(1, 2)
|
||||
target = hifigan_model(mel)
|
||||
|
||||
dest = torchaudio.functional.resample(target, 16000,24000)
|
||||
dest = dest.squeeze().cpu()
|
||||
|
||||
# ソースの音量取得
|
||||
source = source.cpu()
|
||||
specgram = torchaudio.transforms.MelSpectrogram(sample_rate=24000)(source)
|
||||
vol_apply_window_size = math.ceil(len(source[0]) / specgram.size()[2])
|
||||
specgram = specgram.transpose(1,2)
|
||||
vols = [ torch.max(i) for i in specgram[0]]
|
||||
chunks = torch.split(dest, vol_apply_window_size,0)
|
||||
|
||||
chunks = [applyVol(i,c,vols) for i, c in enumerate(chunks)]
|
||||
dest = torch.cat(chunks,1)
|
||||
arr = np.array(dest.squeeze())
|
||||
|
||||
int_size = 2**(16 - 1) - 1
|
||||
arr = (arr * int_size).astype(np.int16)
|
||||
write("converted_data.wav", 24000, arr)
|
||||
changedVoiceBase64 = base64.b64encode(arr).decode('utf-8')
|
||||
|
||||
data = {
|
||||
"gpu":gpu,
|
||||
"srcId":srcId,
|
||||
"dstId":dstId,
|
||||
"timestamp":timestamp,
|
||||
"changedVoiceBase64":changedVoiceBase64
|
||||
}
|
||||
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
|
||||
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
except Exception as e:
|
||||
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = sys.argv
|
||||
PORT = args[1]
|
||||
MODE = args[2]
|
||||
logger.info('INITIALIZE MODEL')
|
||||
logger.info('START APP')
|
||||
uvicorn.run(f"{os.path.basename(__file__)[:-3]}:app", host="0.0.0.0", port=int(PORT), reload=True, log_level="info")
|
144
demo/serverFastAPI.py
Executable file
144
demo/serverFastAPI.py
Executable file
@ -0,0 +1,144 @@
|
||||
from flask import Flask, request, Markup, abort, jsonify, send_from_directory
|
||||
from flask_cors import CORS
|
||||
import logging
|
||||
from logging.config import dictConfig
|
||||
import sys
|
||||
import base64
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from scipy.io.wavfile import write, read
|
||||
from datetime import datetime
|
||||
|
||||
import traceback
|
||||
import struct
|
||||
|
||||
sys.path.append("mod")
|
||||
sys.path.append("mod/text")
|
||||
|
||||
import utils
|
||||
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||
from models import SynthesizerTrn
|
||||
from text.symbols import symbols
|
||||
|
||||
dictConfig({
|
||||
'version': 1,
|
||||
'formatters': {'default': {
|
||||
'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
|
||||
}},
|
||||
'handlers': {'wsgi': {
|
||||
'class': 'logging.StreamHandler',
|
||||
'stream': 'ext://flask.logging.wsgi_errors_stream',
|
||||
'formatter': 'default'
|
||||
}},
|
||||
'root': {
|
||||
'level': 'INFO',
|
||||
'handlers': ['wsgi']
|
||||
}
|
||||
})
|
||||
|
||||
app = Flask(__name__)
|
||||
@app.route("/<path:path>")
|
||||
def static_dir(path):
|
||||
return send_from_directory("../frontend/dist", path)
|
||||
|
||||
@app.route('/', methods=['GET'])
|
||||
def redirect_to_index():
|
||||
return send_from_directory("../frontend/dist", 'index.html')
|
||||
|
||||
CORS(app, resources={r"/*": {"origins": "*"}})
|
||||
|
||||
class VoiceChanger():
|
||||
def __init__(self, config, model):
|
||||
self.hps =utils.get_hparams_from_file(config)
|
||||
self.net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model)
|
||||
self.net_g.eval()
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
print("GPU_NUM:",self.gpu_num)
|
||||
utils.load_checkpoint( model, self.net_g, None)
|
||||
|
||||
|
||||
def on_request(self, gpu, srcId, dstId, timestamp, wav):
|
||||
if wav==0:
|
||||
samplerate, data=read("dummy.wav")
|
||||
unpackedData = data
|
||||
else:
|
||||
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
||||
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
||||
|
||||
try:
|
||||
if gpu<0 or self.gpu_num==0 :
|
||||
with torch.no_grad():
|
||||
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
||||
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
||||
data = TextAudioSpeakerCollate()([data])
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
||||
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
||||
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||
else:
|
||||
with torch.no_grad():
|
||||
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
||||
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
||||
data = TextAudioSpeakerCollate()([data])
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
||||
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
||||
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||
except Exception as e:
|
||||
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
|
||||
audio1 = audio1.astype(np.int16)
|
||||
return audio1
|
||||
|
||||
|
||||
|
||||
@app.route('/test', methods=['GET', 'POST'])
|
||||
def test():
|
||||
try:
|
||||
if request.method == 'GET':
|
||||
return request.args.get('query', '')
|
||||
elif request.method == 'POST':
|
||||
print("POST REQUEST PROCESSING....")
|
||||
gpu = int(request.json['gpu'])
|
||||
srcId = int(request.json['srcId'])
|
||||
dstId = int(request.json['dstId'])
|
||||
timestamp = int(request.json['timestamp'])
|
||||
buffer = request.json['buffer']
|
||||
wav = base64.b64decode(buffer)
|
||||
# print(wav)
|
||||
# print(base64.b64encode(wav))
|
||||
changedVoice = voiceChanger.on_request(gpu, srcId, dstId, timestamp, wav)
|
||||
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
||||
# print("changedVoice",changedVoice)
|
||||
# print("CV64",changedVoiceBase64)
|
||||
data = {
|
||||
"gpu":gpu,
|
||||
"srcId":srcId,
|
||||
"dstId":dstId,
|
||||
"timestamp":timestamp,
|
||||
"changedVoiceBase64":changedVoiceBase64
|
||||
}
|
||||
return jsonify(data)
|
||||
else:
|
||||
return abort(400)
|
||||
except Exception as e:
|
||||
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = sys.argv
|
||||
PORT = args[1]
|
||||
CONFIG = args[2]
|
||||
MODEL = args[3]
|
||||
app.logger.info('INITIALIZE MODEL')
|
||||
voiceChanger = VoiceChanger(CONFIG, MODEL)
|
||||
voiceChanger.on_request(0,0,0,0,0)
|
||||
app.logger.info('START APP')
|
||||
app.run(debug=True, host='0.0.0.0',port=PORT)
|
@ -37,9 +37,6 @@ dictConfig({
|
||||
}
|
||||
})
|
||||
|
||||
|
||||
#app = Flask(__name__, static_folder="../frontend/dist", static_url_path='/')
|
||||
|
||||
app = Flask(__name__)
|
||||
@app.route("/<path:path>")
|
||||
def static_dir(path):
|
||||
|
@ -15,8 +15,6 @@ from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||
from models import SynthesizerTrn
|
||||
from text.symbols import symbols
|
||||
|
||||
|
||||
|
||||
class MyCustomNamespace(socketio.Namespace):
|
||||
def __init__(self, namespace, config, model):
|
||||
super().__init__(namespace)
|
||||
@ -91,6 +89,7 @@ if __name__ == '__main__':
|
||||
sio.register_namespace(MyCustomNamespace('/test', CONFIG, MODEL))
|
||||
app = socketio.WSGIApp(sio,static_files={
|
||||
'': '../frontend/dist',
|
||||
'/': '../frontend/dist/index.html',
|
||||
})
|
||||
eventlet.wsgi.server(eventlet.listen(('0.0.0.0',int(PORT))), app)
|
||||
|
@ -1,13 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo config: $1
|
||||
echo model: $2
|
||||
CONFIG=$1
|
||||
MODEL=$2
|
||||
TYPE=$3
|
||||
|
||||
echo config: $CONFIG
|
||||
echo model: $MODEL
|
||||
echo type: $TYPE
|
||||
|
||||
|
||||
|
||||
cp -r /resources/* .
|
||||
|
||||
if [[ -e ./setting.json ]]; then
|
||||
cp ./setting.json ../frontend/dist/assets/setting.json
|
||||
fi
|
||||
|
||||
python3 serverSIO.py 8080 $1 $2
|
||||
if [ "${TYPE}" = "SOFT_VC" ] ; then
|
||||
echo "SOFT_VCを起動します"
|
||||
python3 SoftVcServerFlask.py 8080
|
||||
elif [ "${TYPE}" = "SOFT_VC_FAST_API" ] ; then
|
||||
echo "SOFT_VC_FAST_APIを起動します"
|
||||
python3 SoftVcServerFastAPI.py 8080
|
||||
else
|
||||
echo "MMVCを起動します"
|
||||
python3 serverSIO.py 8080 $CONFIG $MODEL
|
||||
fi
|
||||
|
||||
|
||||
|
||||
|
14
frontend/dist/index.html
vendored
14
frontend/dist/index.html
vendored
@ -1 +1,13 @@
|
||||
<!doctype html><html lang="ja" style="width:100%;height:100%;overflow:hidden"><head><meta charset="utf-8"/><title>voice recorder</title><script defer="defer" src="index.js"></script></head><body style="width:100%;height:100%;margin:0"><div id="app" style="width:100%;height:100%"></div><noscript><strong>javascriptを有効にしてください</strong></noscript></body></html>
|
||||
<!DOCTYPE html>
|
||||
<html lang="ja" style="width: 100%; height: 100%; overflow: hidden">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<title>voice recorder</title>
|
||||
<script defer src="index.js"></script></head>
|
||||
<body style="width: 100%; height: 100%; margin: 0px">
|
||||
<div id="app" style="width: 100%; height: 100%"></div>
|
||||
<noscript>
|
||||
<strong>javascriptを有効にしてください</strong>
|
||||
</noscript>
|
||||
</body>
|
||||
</html>
|
||||
|
4820
frontend/dist/index.js
vendored
4820
frontend/dist/index.js
vendored
File diff suppressed because one or more lines are too long
@ -2,9 +2,9 @@
|
||||
|
||||
# 参考:https://programwiz.org/2022/03/22/how-to-write-shell-script-for-option-parsing/
|
||||
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20220903_150931
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20220918_220447
|
||||
TENSORBOARD_PORT=6006
|
||||
VOICE_CHANGER_PORT=8080
|
||||
VOICE_CHANGER_PORT=8081
|
||||
|
||||
set -eu
|
||||
|
||||
|
38
template/setting_colab_softvc.json
Normal file
38
template/setting_colab_softvc.json
Normal file
@ -0,0 +1,38 @@
|
||||
{
|
||||
"app_title": "voice-changer",
|
||||
"majar_mode": "colab",
|
||||
"voice_changer_server_url": "/test",
|
||||
"sample_rate": 48000,
|
||||
"buffer_size": 1024,
|
||||
"prefix_chunk_size": 60,
|
||||
"chunk_size": 60,
|
||||
"speaker_ids": [999, 107],
|
||||
"speaker_names": ["---", "user"],
|
||||
"src_id": 107,
|
||||
"dst_id": 999,
|
||||
"vf_enable": true,
|
||||
"voice_changer_mode": "realtime",
|
||||
"gpu": 0,
|
||||
"available_gpus": [0],
|
||||
"avatar": {
|
||||
"enable_avatar": true,
|
||||
"motion_capture_face": true,
|
||||
"motion_capture_upperbody": true,
|
||||
"lip_overwrite_with_voice": true,
|
||||
"avatar_url": "./assets/vrm/zundamon/zundamon.vrm",
|
||||
"backgournd_image_url": "./assets/images/bg_natural_sougen.jpg",
|
||||
"background_color": "#0000dd",
|
||||
"chroma_key": "#0000dd",
|
||||
"avatar_canvas_size": [1280, 720],
|
||||
"screen_canvas_size": [1280, 720]
|
||||
},
|
||||
"advance": {
|
||||
"avatar_draw_skip_rate": 3,
|
||||
"screen_draw_skip_rate": 3,
|
||||
"visualizer_draw_skip_rate": 3,
|
||||
"cross_fade_lower_value": 0.1,
|
||||
"cross_fade_offset_rate": 0.3,
|
||||
"cross_fade_end_rate": 0.6,
|
||||
"cross_fade_type": 2
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
FROM dannadori/voice-changer-internal:20220903_150759 as front
|
||||
FROM dannadori/voice-changer-internal:20220918_215800 as front
|
||||
FROM debian:bullseye-slim as base
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
Loading…
Reference in New Issue
Block a user