voras_betaの追加

This commit is contained in:
nadare 2023-06-24 10:33:57 +09:00
parent c8dc2a2637
commit daff5098f8
15 changed files with 778 additions and 1553 deletions

View File

@ -65,9 +65,9 @@ class EnumInferenceTypes(Enum):
pyTorchRVCNono = "pyTorchRVCNono"
pyTorchRVCv2 = "pyTorchRVCv2"
pyTorchRVCv2Nono = "pyTorchRVCv2Nono"
pyTorchRVCv3 = "pyTorchRVCv3"
pyTorchWebUI = "pyTorchWebUI"
pyTorchWebUINono = "pyTorchWebUINono"
pyTorchVoRASbeta = "pyTorchVoRASbeta"
onnxRVC = "onnxRVC"
onnxRVCNono = "onnxRVCNono"

View File

@ -10,18 +10,15 @@ from data.ModelSlot import ModelSlot
def _setInfoByPytorch(slot: ModelSlot):
cpt = torch.load(slot.modelFile, map_location="cpu")
config_len = len(cpt["config"])
if cpt["version"] == "v3":
print(cpt["version"])
if cpt["version"] == "voras_beta":
slot.f0 = True if cpt["f0"] == 1 else False
slot.modelType = EnumInferenceTypes.pyTorchRVCv3.value
slot.embChannels = cpt["config"][17]
slot.modelType = EnumInferenceTypes.pyTorchVoRASbeta.value
slot.embChannels = 768
slot.embOutputLayer = (
cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9
)
if slot.embChannels == 256:
slot.useFinalProj = True
else:
slot.useFinalProj = False
slot.useFinalProj = False
slot.embedder = cpt["embedder_name"]
if slot.embedder.endswith("768"):
@ -33,7 +30,6 @@ def _setInfoByPytorch(slot: ModelSlot):
slot.embedder = EnumEmbedderTypes.contentvec.value
elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
slot.embedder = EnumEmbedderTypes.hubert_jp.value
print("nadare v3 loaded")
else:
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")

View File

@ -8,7 +8,7 @@ from const import EnumInferenceTypes
class Inferencer(Protocol):
inferencerType: EnumInferenceTypes = EnumInferenceTypes.pyTorchRVC
file: str
isHalf: bool = True
isHalf: bool = False
gpu: int = 0
model: onnxruntime.InferenceSession | Any | None = None

View File

@ -8,7 +8,7 @@ from voice_changer.RVC.inferencer.RVCInferencerv2 import RVCInferencerv2
from voice_changer.RVC.inferencer.RVCInferencerv2Nono import RVCInferencerv2Nono
from voice_changer.RVC.inferencer.WebUIInferencer import WebUIInferencer
from voice_changer.RVC.inferencer.WebUIInferencerNono import WebUIInferencerNono
from voice_changer.RVC.inferencer.RVCInferencerv3 import RVCInferencerv3
from voice_changer.RVC.inferencer.VorasInferencebeta import VoRASInferencer
class InferencerManager:
currentInferencer: Inferencer | None = None
@ -37,8 +37,8 @@ class InferencerManager:
return RVCInferencerNono().loadModel(file, gpu)
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2 or inferencerType == EnumInferenceTypes.pyTorchRVCv2.value:
return RVCInferencerv2().loadModel(file, gpu)
elif inferencerType == EnumInferenceTypes.pyTorchRVCv3 or inferencerType == EnumInferenceTypes.pyTorchRVCv3.value:
return RVCInferencerv3().loadModel(file, gpu)
elif inferencerType == EnumInferenceTypes.pyTorchVoRASbeta or inferencerType == EnumInferenceTypes.pyTorchVoRASbeta.value:
return VoRASInferencer().loadModel(file, gpu)
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono or inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono.value:
return RVCInferencerv2Nono().loadModel(file, gpu)
elif inferencerType == EnumInferenceTypes.pyTorchWebUI or inferencerType == EnumInferenceTypes.pyTorchWebUI.value:

View File

@ -4,26 +4,25 @@ from torch import device
from const import EnumInferenceTypes
from voice_changer.RVC.inferencer.Inferencer import Inferencer
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from .model_v3.models import SynthesizerTrnMs256NSFSid
from .voras_beta.models import Synthesizer
class RVCInferencerv3(Inferencer):
class VoRASInferencer(Inferencer):
def loadModel(self, file: str, gpu: device):
print("nadare v3 load start")
super().setProps(EnumInferenceTypes.pyTorchRVCv3, file, True, gpu)
super().setProps(EnumInferenceTypes.pyTorchVoRASbeta, file, False, gpu)
dev = DeviceManager.get_instance().getDevice(gpu)
isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
self.isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
cpt = torch.load(file, map_location="cpu")
model = SynthesizerTrnMs256NSFSid(**cpt["params"])
model = Synthesizer(**cpt["params"])
model.eval()
model.load_state_dict(cpt["weight"], strict=False)
model.remove_weight_norm()
model.change_speaker(0)
model = model.to(dev)
if isHalf:
model = model.half()
self.model = model
print("load model comprete")

View File

@ -1,343 +0,0 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, weight_norm
from . import commons
from .modules import LayerNorm, LoRALinear1d
class Encoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
gin_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.0,
window_size=25,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
gin_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
gin_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, g):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, g, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask, g)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.attn_layers:
l.remove_weight_norm()
for l in self.ffn_layers:
l.remove_weight_norm()
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels,
out_channels,
gin_channels,
n_heads,
p_dropout=0.0,
window_size=None,
heads_share=False,
block_length=None,
proximal_bias=False,
proximal_init=False,
):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = LoRALinear1d(channels, channels, gin_channels, 2)
self.conv_k = LoRALinear1d(channels, channels, gin_channels, 2)
self.conv_v = LoRALinear1d(channels, channels, gin_channels, 2)
self.conv_qkw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
self.conv_vw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
self.conv_o = LoRALinear1d(channels, out_channels, gin_channels, 2)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
def forward(self, x, c, g, attn_mask=None):
q = self.conv_qkw(self.conv_q(x, g))
k = self.conv_qkw(self.conv_k(c, g))
v = self.conv_vw(self.conv_v(c, g))
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x, g)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert (
t_s == t_t
), "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings
)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(
device=scores.device, dtype=scores.dtype
)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert (
t_s == t_t
), "Local attention is only available for self-attention."
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = (
output.transpose(2, 3).contiguous().view(b, d, t_t)
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
)
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
)
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
def remove_weight_norm(self):
self.conv_q.remove_weight_norm()
self.conv_k.remove_weight_norm()
self.conv_v.remove_weight_norm()
self.conv_o.remove_weight_norm()
remove_weight_norm(self.conv_qkw)
remove_weight_norm(self.conv_vw)
class FFN(nn.Module):
def __init__(
self,
in_channels,
out_channels,
filter_channels,
gin_channels,
kernel_size,
p_dropout=0.0,
activation=None,
causal=False,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
self.conv_1 = LoRALinear1d(in_channels, filter_channels, gin_channels, 2)
self.conv_2 = LoRALinear1d(filter_channels, out_channels, gin_channels, 2)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask, g):
x = self.conv_1(x * x_mask, g)
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(x * x_mask, g)
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def remove_weight_norm(self):
self.conv_1.remove_weight_norm()
self.conv_2.remove_weight_norm()

View File

@ -1,522 +0,0 @@
import math
import os
import sys
import numpy as np
import torch
from torch import nn
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from . import attentions, commons, modules
from .commons import get_padding, init_weights
from .modules import (CausalConvTranspose1d, ConvNext2d, DilatedCausalConv1d,
LoRALinear1d, ResBlock1, WaveConv1D)
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
class TextEncoder(nn.Module):
def __init__(
self,
out_channels: int,
hidden_channels: int,
filter_channels: int,
emb_channels: int,
gin_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: int,
f0: bool = True,
):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.emb_channels = emb_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
if f0 == True:
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
self.emb_g = nn.Conv1d(gin_channels, hidden_channels, 1)
self.encoder = attentions.Encoder(
hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, phone, pitch, lengths, g):
if pitch == None:
x = self.emb_phone(phone)
else:
x = self.emb_phone(phone) + self.emb_pitch(pitch)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
x.dtype
)
x = self.encoder(x * x_mask, x_mask, g)
x = self.proj(x)
return x, None, x_mask
class SineGen(torch.nn.Module):
"""Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(
self,
samp_rate,
harmonic_num=0,
sine_amp=0.1,
noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False,
):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def forward(self, f0, upp):
"""sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0 = f0[:, None].transpose(1, 2)
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
idx + 2
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
rand_ini = torch.rand(
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
tmp_over_one *= upp
tmp_over_one = F.interpolate(
tmp_over_one.transpose(2, 1),
scale_factor=upp,
mode="linear",
align_corners=True,
).transpose(2, 1)
rad_values = F.interpolate(
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
).transpose(
2, 1
) #######
tmp_over_one %= 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sine_waves = torch.sin(
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
)
sine_waves = sine_waves * self.sine_amp
uv = self._f02uv(f0)
uv = F.interpolate(
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
).transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
"""SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(
self,
sampling_rate,
gin_channels,
harmonic_num=0,
sine_amp=0.1,
add_noise_std=0.003,
voiced_threshod=0,
is_half=True,
):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
self.is_half = is_half
# to produce sine waveforms
self.l_sin_gen = SineGen(
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Conv1d(gin_channels, harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x, upp=None):
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
sine_raw = torch.transpose(sine_wavs, 1, 2).to(device=x.device, dtype=x.dtype)
return sine_raw, None, None # noise, uv
class GeneratorNSF(torch.nn.Module):
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels,
sr,
harmonic_num=16,
is_half=False,
):
super(GeneratorNSF, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.upsample_rates = upsample_rates
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
self.m_source = SourceModuleHnNSF(
sampling_rate=sr, gin_channels=gin_channels, harmonic_num=harmonic_num, is_half=is_half
)
self.gpre = Conv1d(gin_channels, initial_channel, 1)
self.conv_pre = ResBlock1(initial_channel, upsample_initial_channel, gin_channels, [7] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, 2)
self.ups = nn.ModuleList()
self.resblocks = nn.ModuleList()
c_cur = upsample_initial_channel
for i, u in enumerate(upsample_rates):
c_pre = c_cur
c_cur = c_pre // 2
self.ups.append(
CausalConvTranspose1d(
c_pre,
c_pre,
kernel_rate=3,
stride=u,
groups=c_pre,
)
)
self.resblocks.append(ResBlock1(c_pre, c_cur, gin_channels, [11] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, r=2))
self.conv_post = DilatedCausalConv1d(c_cur, 1, 5, stride=1, groups=1, dilation=1, bias=False)
self.noise_convs = nn.ModuleList()
self.noise_pre = LoRALinear1d(1 + harmonic_num, c_pre, gin_channels, r=2+harmonic_num)
for i, u in enumerate(upsample_rates[::-1]):
c_pre = c_pre * 2
c_cur = c_cur * 2
if i + 1 < len(upsample_rates):
self.noise_convs.append(DilatedCausalConv1d(c_cur, c_pre, kernel_size=u*3, stride=u, groups=c_cur, dilation=1))
else:
self.noise_convs.append(DilatedCausalConv1d(c_cur, initial_channel, kernel_size=u*3, stride=u, groups=math.gcd(c_cur, initial_channel), dilation=1))
self.upp = np.prod(upsample_rates)
def forward(self, x, x_mask, f0f, g):
har_source, noi_source, uv = self.m_source(f0f, self.upp)
har_source = self.noise_pre(har_source, g)
x_sources = [har_source]
for c in self.noise_convs:
har_source = c(har_source)
x_sources.append(har_source)
x = x + x_sources[-1]
x = x + self.gpre(g)
x = self.conv_pre(x, x_mask, g)
for i, u in enumerate(self.upsample_rates):
x_mask = torch.repeat_interleave(x_mask, u, 2)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
x = self.resblocks[i](x + x_sources[-i-2], x_mask, g)
x = F.leaky_relu(x)
x = self.conv_post(x)
if x_mask is not None:
x *= x_mask
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.noise_pre)
remove_weight_norm(self.conv_post)
sr2sr = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
class SynthesizerTrnMs256NSFSid(nn.Module):
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
spk_embed_dim,
gin_channels,
emb_channels,
sr,
**kwargs
):
super().__init__()
if type(sr) == type("strr"):
sr = sr2sr[sr]
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.emb_channels = emb_channels
self.sr = sr
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.emb_pitch = nn.Embedding(256, emb_channels) # pitch 256
self.dec = GeneratorNSF(
emb_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
sr=sr,
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print(
"gin_channels:",
gin_channels,
"self.spk_embed_dim:",
self.spk_embed_dim,
"emb_channels:",
emb_channels,
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
def forward(
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
): # 这里ds是id[bs,1]
# print(1,pitch.shape)#[bs,t]
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
# m_p, _, x_mask = self.enc_p(phone, pitch, phone_lengths, g)
# z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
# z_p = self.flow(m_p * x_mask, x_mask, g=g)
x = phone + self.emb_pitch(pitch)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
phone.dtype
)
m_p_slice, ids_slice = commons.rand_slice_segments(
x, phone_lengths, self.segment_size
)
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
# print(-2,pitchf.shape,z_slice.shape)
o = self.dec(m_p_slice, mask_slice, pitchf, g)
return o, ids_slice, x_mask, g
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
g = self.emb_g(sid).unsqueeze(-1)
x = phone + self.emb_pitch(pitch)
x = torch.transpose(x, 1, -1)
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
phone.dtype
)
o = self.dec((x * x_mask)[:, :, :max_len], x_mask, nsff0, g)
return o, x_mask, (None, None, None, None)
class DiscriminatorS(torch.nn.Module):
def __init__(
self,
hidden_channels: int,
filter_channels: int,
gin_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: int,
):
super(DiscriminatorS, self).__init__()
self.convs = WaveConv1D(2, hidden_channels, gin_channels, [10, 7, 7, 7, 5, 3, 3], [5, 4, 4, 4, 3, 2, 2], [1] * 7, hidden_channels // 2, False)
self.encoder = attentions.Encoder(
hidden_channels, filter_channels, gin_channels, n_heads, n_layers//2, kernel_size, p_dropout
)
self.cross = weight_norm(torch.nn.Conv1d(gin_channels, hidden_channels, 1, 1))
self.conv_post = weight_norm(torch.nn.Conv1d(hidden_channels, 1, 3, 1, padding=get_padding(5, 1)))
def forward(self, x, g):
x = self.convs(x)
x_mask = torch.ones([x.shape[0], 1, x.shape[2]], device=x.device, dtype=x.dtype)
x = self.encoder(x, x_mask, g)
fmap = [x]
x = x + x * self.cross(g)
y = self.conv_post(x)
return y, fmap
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
self.init_kernel_size = upsample_rates[-1] * 3
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
N = len(upsample_rates)
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
self.convs = nn.ModuleList()
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
self.convs.append(
ConvNext2d(
final_dim // (2 ** (N - i)),
final_dim // (2 ** (N - i - 1)),
gin_channels,
(u*3, 1),
(u, 1),
4,
r=2
)
)
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
def forward(self, x, g):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (n_pad, 0), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
x = torch.flip(x, dims=[2])
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
x = self.init_conv(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = torch.flip(x, dims=[2])
for i, l in enumerate(self.convs):
x = l(x, g)
if i >= 1:
fmap.append(x)
x = F.pad(x, [0, 0, 2, 0], mode="constant")
x = self.conv_post(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
super(MultiPeriodDiscriminator, self).__init__()
# discs = [DiscriminatorS(hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout)]
discs = [
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
]
self.ups = np.prod(upsample_rates)
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat, g):
fmap_rs = []
fmap_gs = []
y_d_rs = []
y_d_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y, g)
y_d_g, fmap_g = d(y_hat, g)
# for j in range(len(fmap_r)):
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs

View File

@ -1,626 +0,0 @@
import math
import torch
from torch import nn
from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from . import commons, modules
from .commons import get_padding, init_weights
from .transforms import piecewise_rational_quadratic_transform
LRELU_SLOPE = 0.1
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class ConvReluNorm(nn.Module):
def __init__(
self,
in_channels,
hidden_channels,
out_channels,
kernel_size,
n_layers,
p_dropout,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(
nn.Conv1d(
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(
nn.Conv1d(
hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2,
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Module):
"""
Dialted and Depth-Separable Convolution
"""
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(n_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(
nn.Conv1d(
channels,
channels,
kernel_size,
groups=channels,
dilation=dilation,
padding=padding,
)
)
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(torch.nn.Module):
def __init__(
self,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
p_dropout=0,
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
self.hidden_channels = hidden_channels
self.kernel_size = (kernel_size,)
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(
gin_channels, 2 * hidden_channels * n_layers, 1
)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
for i in range(n_layers):
dilation = dilation_rate**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
else:
g_l = torch.zeros_like(x_in)
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_channels, :]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:, self.hidden_channels :, :]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class DilatedCausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
super(DilatedCausalConv1d, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
self.stride = stride
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
init_weights(self.conv)
def forward(self, x):
x = torch.flip(x, [2])
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
size = x.shape[2] // self.stride
x = self.conv(x)[:, :, :size]
x = torch.flip(x, [2])
return x
def remove_weight_norm(self):
remove_weight_norm(self.conv)
class CausalConvTranspose1d(nn.Module):
"""
padding = 0, dilation = 1のとき
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
output_paddingいらないね
"""
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
super(CausalConvTranspose1d, self).__init__()
kernel_size = kernel_rate * stride
self.trim_size = (kernel_rate - 1) * stride
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
def forward(self, x):
x = self.conv(x)
return x[:, :, :-self.trim_size]
def remove_weight_norm(self):
remove_weight_norm(self.conv)
class LoRALinear1d(nn.Module):
def __init__(self, in_channels, out_channels, info_channels, r):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.info_channels = info_channels
self.r = r
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
init_weights(self.main_fc)
self.adapter_in = weight_norm(self.adapter_in)
self.adapter_out = weight_norm(self.adapter_out)
def forward(self, x, g):
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
x = self.main_fc(x) + torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
return x
def remove_weight_norm(self):
remove_weight_norm(self.main_fc)
remove_weight_norm(self.adapter_in)
remove_weight_norm(self.adapter_out)
class LoRALinear2d(nn.Module):
def __init__(self, in_channels, out_channels, info_channels, r):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.info_channels = info_channels
self.r = r
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
self.adapter_in = weight_norm(self.adapter_in)
self.adapter_out = weight_norm(self.adapter_out)
def forward(self, x, g):
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
x = self.main_fc(x) + torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
return x
def remove_weight_norm(self):
remove_weight_norm(self.main_fc)
remove_weight_norm(self.adapter_in)
remove_weight_norm(self.adapter_out)
class WaveConv1D(torch.nn.Module):
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r, use_spectral_norm=False):
super(WaveConv1D, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
inner_channels = int(in_channels * extend_ratio)
self.convs = []
# self.norms = []
self.convs.append(LoRALinear1d(in_channels, inner_channels, gin_channels, r))
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations), start=1):
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, k, s, dilation=d, groups=inner_channels, padding=get_padding(k, d))))
if i < len(kernel_sizes):
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, 1, 1)))
else:
self.convs.append(norm_f(Conv1d(inner_channels, out_channels, 1, 1)))
self.convs = nn.ModuleList(self.convs)
def forward(self, x, g, x_mask=None):
for i, l in enumerate(self.convs):
if i % 2:
x_ = l(x)
else:
x_ = l(x, g)
x = F.leaky_relu(x_, modules.LRELU_SLOPE)
if x_mask is not None:
x *= x_mask
return x
def remove_weight_norm(self):
for i, c in enumerate(self.convs):
if i % 2:
remove_weight_norm(c)
else:
c.remove_weight_norm()
class MBConv2d(torch.nn.Module):
"""
Causal MBConv2D
"""
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
super(MBConv2d, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
inner_channels = int(in_channels * extend_ratio)
self.kernel_size = kernel_size
self.pre_pointwise = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
self.depthwise = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
self.post_pointwise = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
def forward(self, x, g):
x = self.pre_pointwise(x, g)
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
x = self.depthwise(x)
x = self.post_pointwise(x, g)
return x
class ConvNext2d(torch.nn.Module):
"""
Causal ConvNext Block
stride = 1 only
"""
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
super(ConvNext2d, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
inner_channels = int(in_channels * extend_ratio)
self.kernel_size = kernel_size
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
self.act = nn.GELU()
self.norm = LayerNorm(in_channels)
def forward(self, x, g):
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
x = self.dwconv(x)
x = self.norm(x)
x = self.pwconv1(x, g)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.pwconv2(x, g)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
return x
def remove_weight_norm(self):
remove_weight_norm(self.dwconv)
class SqueezeExcitation1D(torch.nn.Module):
def __init__(self, input_channels, squeeze_channels, gin_channels, use_spectral_norm=False):
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
super(SqueezeExcitation1D, self).__init__()
self.fc1 = LoRALinear1d(input_channels, squeeze_channels, gin_channels, 2)
self.fc2 = LoRALinear1d(squeeze_channels, input_channels, gin_channels, 2)
def _scale(self, x, x_mask, g):
x_length = torch.sum(x_mask, dim=2, keepdim=True)
x_length = torch.maximum(x_length, torch.ones_like(x_length))
scale = torch.sum(x * x_mask, dim=2, keepdim=True) / x_length
scale = self.fc1(scale, g)
scale = F.leaky_relu(scale, modules.LRELU_SLOPE)
scale = self.fc2(scale, g)
return torch.sigmoid(scale)
def forward(self, x, x_mask, g):
scale = self._scale(x, x_mask, g)
return scale * x
def remove_weight_norm(self):
self.fc1.remove_weight_norm()
self.fc2.remove_weight_norm()
class ResBlock1(torch.nn.Module):
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r):
super(ResBlock1, self).__init__()
norm_f = weight_norm
inner_channels = int(in_channels * extend_ratio)
self.dconvs = nn.ModuleList()
self.pconvs = nn.ModuleList()
# self.ses = nn.ModuleList()
self.norms = nn.ModuleList()
self.init_conv = LoRALinear1d(in_channels, inner_channels, gin_channels, r)
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
self.norms.append(LayerNorm(inner_channels))
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
if i < len(kernel_sizes) - 1:
self.pconvs.append(LoRALinear1d(inner_channels, inner_channels, gin_channels, r))
self.out_conv = LoRALinear1d(inner_channels, out_channels, gin_channels, r)
init_weights(self.init_conv)
init_weights(self.out_conv)
def forward(self, x, x_mask, g):
x *= x_mask
x = self.init_conv(x, g)
for i in range(len(self.dconvs)):
x *= x_mask
x = self.norms[i](x)
x_ = self.dconvs[i](x)
x_ = F.leaky_relu(x_, modules.LRELU_SLOPE)
if i < len(self.dconvs) - 1:
x = x + self.pconvs[i](x_, g)
x = self.out_conv(x_, g)
return x
def remove_weight_norm(self):
for c in self.dconvs:
c.remove_weight_norm()
for c in self.pconvs:
c.remove_weight_norm()
self.init_conv.remove_weight_norm()
self.out_conv.remove_weight_norm()
class Log(nn.Module):
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
logdet = torch.sum(-y, [1, 2])
return y, logdet
else:
x = torch.exp(x) * x_mask
return x
class Flip(nn.Module):
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.m = nn.Parameter(torch.zeros(channels, 1))
self.logs = nn.Parameter(torch.zeros(channels, 1))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + torch.exp(self.logs) * x
y = y * x_mask
logdet = torch.sum(self.logs * x_mask, [1, 2])
return y, logdet
else:
x = (x - self.m) * torch.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Module):
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
def remove_weight_norm(self):
self.enc.remove_weight_norm()
class ConvFlow(nn.Module):
def __init__(
self,
in_channels,
filter_channels,
kernel_size,
n_layers,
num_bins=10,
tail_bound=5.0,
):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.num_bins = num_bins
self.tail_bound = tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
self.proj = nn.Conv1d(
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
self.filter_channels
)
unnormalized_derivatives = h[..., 2 * self.num_bins :]
x1, logabsdet = piecewise_rational_quadratic_transform(
x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails="linear",
tail_bound=self.tail_bound,
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1, 2])
if not reverse:
return x, logdet
else:
return x

View File

@ -32,27 +32,17 @@ class TrainConfigData(BaseModel):
class TrainConfigModel(BaseModel):
emb_channels: int
inter_channels: int
hidden_channels: int
filter_channels: int
n_heads: int
n_layers: int
kernel_size: int
p_dropout: int
resblock: str
resblock_kernel_sizes: List[int]
resblock_dilation_sizes: List[List[int]]
upsample_rates: List[int]
upsample_initial_channel: int
upsample_kernel_sizes: List[int]
use_spectral_norm: bool
gin_channels: int
emb_channels: int
spk_embed_dim: int
class TrainConfig(BaseModel):
version: Literal["v1", "v2"] = "v2"
version: Literal["voras"] = "voras"
train: TrainConfigTrain
data: TrainConfigData
model: TrainConfigModel

View File

@ -0,0 +1,238 @@
import math
import os
import sys
import numpy as np
import torch
from torch import nn
from torch.nn import Conv2d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from . import commons, modules
from .commons import get_padding
from .modules import (ConvNext2d, HarmonicEmbedder, IMDCTSymExpHead,
LoRALinear1d, SnakeFilter, WaveBlock)
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
sr2sr = {
"24k": 24000,
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
class GeneratorVoras(torch.nn.Module):
def __init__(
self,
emb_channels,
inter_channels,
gin_channels,
n_layers,
sr,
hop_length,
):
super(GeneratorVoras, self).__init__()
self.n_layers = n_layers
self.emb_pitch = HarmonicEmbedder(768, inter_channels, gin_channels, 16, 15) # # pitch 256
self.plinear = LoRALinear1d(inter_channels, inter_channels, gin_channels, r=8)
self.glinear = weight_norm(nn.Conv1d(gin_channels, inter_channels, 1))
self.resblocks = nn.ModuleList()
self.init_linear = LoRALinear1d(emb_channels, inter_channels, gin_channels, r=4)
for _ in range(self.n_layers):
self.resblocks.append(WaveBlock(inter_channels, gin_channels, [9] * 2, [1] * 2, [1, 9], 2, r=4))
self.head = IMDCTSymExpHead(inter_channels, gin_channels, hop_length, padding="center", sample_rate=sr)
self.post = SnakeFilter(4, 8, 9, 2, eps=1e-5)
def forward(self, x, pitchf, x_mask, g):
x = self.init_linear(x, g) + self.plinear(self.emb_pitch(pitchf, g), g) + self.glinear(g)
for i in range(self.n_layers):
x = self.resblocks[i](x, x_mask, g)
x = x * x_mask
x = self.head(x, g)
x = self.post(x)
return torch.tanh(x)
def remove_weight_norm(self):
self.plinear.remove_weight_norm()
remove_weight_norm(self.glinear)
for l in self.resblocks:
l.remove_weight_norm()
self.init_linear.remove_weight_norm()
self.head.remove_weight_norm()
self.post.remove_weight_norm()
def fix_speaker(self, g):
self.plinear.fix_speaker(g)
self.init_linear.fix_speaker(g)
for l in self.resblocks:
l.fix_speaker(g)
self.head.fix_speaker(g)
def unfix_speaker(self, g):
self.plinear.unfix_speaker(g)
self.init_linear.unfix_speaker(g)
for l in self.resblocks:
l.unfix_speaker(g)
self.head.unfix_speaker(g)
class Synthesizer(nn.Module):
def __init__(
self,
segment_size,
n_fft,
hop_length,
inter_channels,
n_layers,
spk_embed_dim,
gin_channels,
emb_channels,
sr,
**kwargs
):
super().__init__()
if type(sr) == type("strr"):
sr = sr2sr[sr]
self.segment_size = segment_size
self.n_fft = n_fft
self.hop_length = hop_length
self.inter_channels = inter_channels
self.n_layers = n_layers
self.spk_embed_dim = spk_embed_dim
self.gin_channels = gin_channels
self.emb_channels = emb_channels
self.sr = sr
self.dec = GeneratorVoras(
emb_channels,
inter_channels,
gin_channels,
n_layers,
sr,
hop_length
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print(
"gin_channels:",
gin_channels,
"self.spk_embed_dim:",
self.spk_embed_dim,
"emb_channels:",
emb_channels,
)
self.speaker = None
def remove_weight_norm(self):
self.dec.remove_weight_norm()
def change_speaker(self, sid: int):
if self.speaker is not None:
g = self.emb_g(torch.from_numpy(np.array(self.speaker))).unsqueeze(-1)
self.dec.unfix_speaker(g)
g = self.emb_g(torch.from_numpy(np.array(sid))).unsqueeze(-1)
self.dec.fix_speaker(g)
self.speaker = sid
def forward(
self, phone, phone_lengths, pitch, pitchf, ds
):
g = self.emb_g(ds).unsqueeze(-1)
x = torch.transpose(phone, 1, -1)
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
x_slice, ids_slice = commons.rand_slice_segments(
x, phone_lengths, self.segment_size
)
pitchf_slice = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
o = self.dec(x_slice, pitchf_slice, mask_slice, g)
return o, ids_slice, x_mask, g
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
g = self.emb_g(sid).unsqueeze(-1)
x = torch.transpose(phone, 1, -1)
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
o = self.dec((x * x_mask)[:, :, :max_len], nsff0, x_mask, g)
return o, x_mask, (None, None, None, None)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
self.init_kernel_size = upsample_rates[-1] * 3
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
N = len(upsample_rates)
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
self.convs = nn.ModuleList()
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
self.convs.append(
ConvNext2d(
final_dim // (2 ** (N - i)),
final_dim // (2 ** (N - i - 1)),
gin_channels,
(u*3, 1),
(u, 1),
4,
r=2 + i//2
)
)
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
def forward(self, x, g):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (n_pad, 0), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
x = torch.flip(x, dims=[2])
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
x = self.init_conv(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = torch.flip(x, dims=[2])
fmap.append(x)
for i, l in enumerate(self.convs):
x = l(x, g)
fmap.append(x)
x = F.pad(x, [0, 0, 2, 0], mode="constant")
x = self.conv_post(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
super(MultiPeriodDiscriminator, self).__init__()
discs = [
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
]
self.ups = np.prod(upsample_rates)
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat, g):
fmap_rs = []
fmap_gs = []
y_d_rs = []
y_d_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(y, g)
y_d_g, fmap_g = d(y_hat, g)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs

View File

@ -0,0 +1,496 @@
import math
import numpy as np
import scipy
import torch
from torch import nn
from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
from . import commons, modules
from .commons import get_padding, init_weights
from .transforms import piecewise_rational_quadratic_transform
LRELU_SLOPE = 0.1
class HarmonicEmbedder(nn.Module):
def __init__(self, num_embeddings, embedding_dim, gin_channels, num_head, num_harmonic=0, f0_min=50., f0_max=1100., device="cuda"):
super(HarmonicEmbedder, self).__init__()
self.embedding_dim = embedding_dim
self.num_head = num_head
self.num_harmonic = num_harmonic
f0_mel_min = np.log(1 + f0_min / 700)
f0_mel_max = np.log(1 + f0_max * (1 + num_harmonic) / 700)
self.sequence = torch.from_numpy(np.linspace(f0_mel_min, f0_mel_max, num_embeddings-2))
self.emb_layer = torch.nn.Embedding(num_embeddings, embedding_dim)
self.linear_q = Conv1d(gin_channels, num_head * (1 + num_harmonic), 1)
self.weight = None
def forward(self, x, g):
b, l = x.size()
non_zero = (x != 0.).to(dtype=torch.long).unsqueeze(1)
mel = torch.log(1 + x / 700).unsqueeze(1)
harmonies = torch.arange(1 + self.num_harmonic, device=x.device, dtype=x.dtype).view(1, 1 + self.num_harmonic, 1) + 1.
ix = torch.searchsorted(self.sequence.to(x.device), mel * harmonies).to(x.device) + 1
ix = ix * non_zero
emb = self.emb_layer(ix).transpose(1, 3).reshape(b, self.num_head, self.embedding_dim // self.num_head, 1 + self.num_harmonic, l)
if self.weight is None:
weight = torch.nn.functional.softmax(self.linear_q(g).reshape(b, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
else:
weight = self.weight
res = torch.sum(emb * weight, dim=3).reshape(b, self.embedding_dim, l)
return res
def fix_speaker(self, g):
self.weight = torch.nn.functional.softmax(self.linear_q(g).reshape(1, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
def unfix_speaker(self, g):
self.weight = None
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class DilatedCausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
super(DilatedCausalConv1d, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
self.stride = stride
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
def forward(self, x):
x = torch.flip(x, [2])
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
size = x.shape[2] // self.stride
x = self.conv(x)[:, :, :size]
x = torch.flip(x, [2])
return x
def remove_weight_norm(self):
remove_weight_norm(self.conv)
class CausalConvTranspose1d(nn.Module):
"""
padding = 0, dilation = 1のとき
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
output_paddingいらないね
"""
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
super(CausalConvTranspose1d, self).__init__()
kernel_size = kernel_rate * stride
self.trim_size = (kernel_rate - 1) * stride
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
def forward(self, x):
x = self.conv(x)
return x[:, :, :-self.trim_size]
def remove_weight_norm(self):
remove_weight_norm(self.conv)
class LoRALinear1d(nn.Module):
def __init__(self, in_channels, out_channels, info_channels, r):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.info_channels = info_channels
self.r = r
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
self.adapter_in = weight_norm(self.adapter_in)
self.adapter_out = weight_norm(self.adapter_out)
self.speaker_fixed = False
def forward(self, x, g):
x_ = self.main_fc(x)
if not self.speaker_fixed:
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
l = torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
x_ = x_ + l
return x_
def remove_weight_norm(self):
remove_weight_norm(self.main_fc)
remove_weight_norm(self.adapter_in)
remove_weight_norm(self.adapter_out)
def fix_speaker(self, g):
self.speaker_fixed = True
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
self.main_fc.weight.data.add_(weight)
def unfix_speaker(self, g):
self.speaker_fixed = False
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
self.main_fc.weight.data.sub_(weight)
class LoRALinear2d(nn.Module):
def __init__(self, in_channels, out_channels, info_channels, r):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.info_channels = info_channels
self.r = r
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
self.adapter_in = weight_norm(self.adapter_in)
self.adapter_out = weight_norm(self.adapter_out)
self.speaker_fixed = False
def forward(self, x, g):
x_ = self.main_fc(x)
if not self.speaker_fixed:
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
l = torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
x_ = x_ + l
return x_
def remove_weight_norm(self):
remove_weight_norm(self.main_fc)
remove_weight_norm(self.adapter_in)
remove_weight_norm(self.adapter_out)
def fix_speaker(self, g):
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
self.main_fc.weight.data.add_(weight)
def unfix_speaker(self, g):
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
self.main_fc.weight.data.sub_(weight)
class MBConv2d(torch.nn.Module):
"""
Causal MBConv2D
"""
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
super(MBConv2d, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
inner_channels = int(in_channels * extend_ratio)
self.kernel_size = kernel_size
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
self.dwconv = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
self.pwnorm = LayerNorm(in_channels)
self.dwnorm = LayerNorm(inner_channels)
def forward(self, x, g):
x = self.pwnorm(x)
x = self.pwconv1(x, g)
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
x = self.dwnorm(x)
x = self.dwconv(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.pwconv2(x, g)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
return x
class ConvNext2d(torch.nn.Module):
"""
Causal ConvNext Block
stride = 1 only
"""
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
super(ConvNext2d, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
inner_channels = int(in_channels * extend_ratio)
self.kernel_size = kernel_size
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
self.act = nn.GELU()
self.norm = LayerNorm(in_channels)
def forward(self, x, g):
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
x = self.dwconv(x)
x = self.norm(x)
x = self.pwconv1(x, g)
x = self.act(x)
x = self.pwconv2(x, g)
x = self.act(x)
return x
def remove_weight_norm(self):
remove_weight_norm(self.dwconv)
class WaveBlock(torch.nn.Module):
def __init__(self, inner_channels, gin_channels, kernel_sizes, strides, dilations, extend_rate, r):
super(WaveBlock, self).__init__()
norm_f = weight_norm
extend_channels = int(inner_channels * extend_rate)
self.dconvs = nn.ModuleList()
self.p1convs = nn.ModuleList()
self.p2convs = nn.ModuleList()
self.norms = nn.ModuleList()
self.act = nn.GELU()
# self.ses = nn.ModuleList()
# self.norms = []
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
self.p1convs.append(LoRALinear1d(inner_channels, extend_channels, gin_channels, r))
self.p2convs.append(LoRALinear1d(extend_channels, inner_channels, gin_channels, r))
self.norms.append(LayerNorm(inner_channels))
def forward(self, x, x_mask, g):
x *= x_mask
for i in range(len(self.dconvs)):
residual = x.clone()
x = self.dconvs[i](x)
x = self.norms[i](x)
x *= x_mask
x = self.p1convs[i](x, g)
x = self.act(x)
x = self.p2convs[i](x, g)
x = residual + x
return x
def remove_weight_norm(self):
for c in self.dconvs:
c.remove_weight_norm()
for c in self.p1convs:
c.remove_weight_norm()
for c in self.p2convs:
c.remove_weight_norm()
def fix_speaker(self, g):
for c in self.p1convs:
c.fix_speaker(g)
for c in self.p2convs:
c.fix_speaker(g)
def unfix_speaker(self, g):
for c in self.p1convs:
c.unfix_speaker(g)
for c in self.p2convs:
c.unfix_speaker(g)
class SnakeFilter(torch.nn.Module):
"""
Adaptive filter using snakebeta
"""
def __init__(self, channels, groups, kernel_size, num_layers, eps=1e-6):
super(SnakeFilter, self).__init__()
self.eps = eps
self.num_layers = num_layers
inner_channels = channels * groups
self.init_conv = DilatedCausalConv1d(1, inner_channels, kernel_size)
self.dconvs = torch.nn.ModuleList()
self.pconvs = torch.nn.ModuleList()
self.post_conv = DilatedCausalConv1d(inner_channels+1, 1, kernel_size, bias=False)
for i in range(self.num_layers):
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, kernel_size, stride=1, groups=inner_channels, dilation=kernel_size ** (i + 1)))
self.pconvs.append(weight_norm(Conv1d(inner_channels, inner_channels, 1, groups=groups)))
self.snake_alpha = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
self.snake_beta = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
def forward(self, x):
y = x.clone()
x = self.init_conv(x)
for i in range(self.num_layers):
# snake activation
x = self.dconvs[i](x)
x = self.pconvs[i](x)
x = x + (1.0 / torch.clip(self.snake_beta.unsqueeze(0).unsqueeze(-1), min=self.eps)) * torch.pow(torch.sin(x * self.snake_alpha.unsqueeze(0).unsqueeze(-1)), 2)
x = torch.cat([x, y], 1)
x = self.post_conv(x)
return x
def remove_weight_norm(self):
self.init_conv.remove_weight_norm()
for c in self.dconvs:
c.remove_weight_norm()
for c in self.pconvs:
remove_weight_norm(c)
self.post_conv.remove_weight_norm()
"""
https://github.com/charactr-platform/vocos/blob/main/vocos/heads.py
"""
class FourierHead(nn.Module):
"""Base class for inverse fourier modules."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class IMDCT(nn.Module):
"""
Inverse Modified Discrete Cosine Transform (IMDCT) module.
Args:
frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
"""
def __init__(self, frame_len: int, padding: str = "same"):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.frame_len = frame_len * 2
N = frame_len
n0 = (N + 1) / 2
window = torch.from_numpy(scipy.signal.cosine(N * 2)).float()
self.register_buffer("window", window)
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
self.register_buffer("pre_twiddle", torch.view_as_real(pre_twiddle))
self.register_buffer("post_twiddle", torch.view_as_real(post_twiddle))
def forward(self, X: torch.Tensor) -> torch.Tensor:
"""
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
Args:
X (Tensor): Input MDCT coefficients of shape (B, N, L), where B is the batch size,
L is the number of frames, and N is the number of frequency bins.
Returns:
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
"""
X = X.transpose(1, 2)
B, L, N = X.shape
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
Y[..., :N] = X
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
y = torch.fft.ifft(Y * torch.view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1)
y = torch.real(y * torch.view_as_complex(self.post_twiddle).expand(y.shape)) * np.sqrt(N) * np.sqrt(2)
result = y * self.window.expand(y.shape)
output_size = (1, (L + 1) * N)
audio = torch.nn.functional.fold(
result.transpose(1, 2),
output_size=output_size,
kernel_size=(1, self.frame_len),
stride=(1, self.frame_len // 2),
)[:, 0, 0, :]
if self.padding == "center":
pad = self.frame_len // 2
elif self.padding == "same":
pad = self.frame_len // 4
else:
raise ValueError("Padding must be 'center' or 'same'.")
audio = audio[:, pad:-pad]
return audio.unsqueeze(1)
class IMDCTSymExpHead(FourierHead):
"""
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
Args:
dim (int): Hidden dimension of the model.
mdct_frame_len (int): Length of the MDCT frame.
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
based on perceptual scaling. Defaults to None.
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
"""
def __init__(
self, dim: int, gin_channels: int, mdct_frame_len: int, padding: str = "same", sample_rate: int = 24000,
):
super().__init__()
out_dim = mdct_frame_len
self.dconv = DilatedCausalConv1d(dim, dim, 5, 1, dim, 1)
self.pconv1 = LoRALinear1d(dim, dim * 2, gin_channels, 2)
self.pconv2 = LoRALinear1d(dim * 2, out_dim, gin_channels, 2)
self.act = torch.nn.GELU()
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
if sample_rate is not None:
# optionally init the last layer following mel-scale
m_max = _hz_to_mel(sample_rate // 2)
m_pts = torch.linspace(0, m_max, out_dim)
f_pts = _mel_to_hz(m_pts)
scale = 1 - (f_pts / f_pts.max())
with torch.no_grad():
self.pconv2.main_fc.weight.mul_(scale.view(-1, 1, 1))
def forward(self, x: torch.Tensor, g: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the IMDCTSymExpHead module.
Args:
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
L is the sequence length, and H denotes the model dimension.
Returns:
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
"""
x = self.dconv(x)
x = self.pconv1(x, g)
x = self.act(x)
x = self.pconv2(x, g)
x = symexp(x)
x = torch.clip(x, min=-1e2, max=1e2) # safeguard to prevent excessively large magnitudes
audio = self.imdct(x)
return audio
def remove_weight_norm(self):
self.dconv.remove_weight_norm()
self.pconv1.remove_weight_norm()
self.pconv2.remove_weight_norm()
def fix_speaker(self, g):
self.pconv1.fix_speaker(g)
self.pconv2.fix_speaker(g)
def unfix_speaker(self, g):
self.pconv1.unfix_speaker(g)
self.pconv2.unfix_speaker(g)
def symexp(x: torch.Tensor) -> torch.Tensor:
return torch.sign(x) * (torch.exp(x.abs()) - 1)

View File

@ -3,6 +3,7 @@ from typing import Any
import math
import torch
import torch.nn.functional as F
from torch.cuda.amp import autocast
from Exceptions import (
DeviceCannotSupportHalfPrecisionException,
DeviceChangingException,
@ -118,10 +119,6 @@ class Pipeline(object):
# tensor型調整
feats = audio_pad
if self.isHalf is True:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
@ -129,19 +126,20 @@ class Pipeline(object):
# embedding
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
try:
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
if torch.isnan(feats).all():
raise DeviceCannotSupportHalfPrecisionException()
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
if protect < 0.5 and search_index:
feats0 = feats.clone()
with autocast(enabled=self.isHalf):
try:
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
if torch.isnan(feats).all():
raise DeviceCannotSupportHalfPrecisionException()
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
if protect < 0.5 and search_index:
feats0 = feats.clone()
# Index - feature抽出
# if self.index is not None and self.feature is not None and index_rate != 0:
@ -167,10 +165,8 @@ class Pipeline(object):
# recover silient font
npy = np.concatenate([np.zeros([npyOffset, npy.shape[1]]).astype("float32"), npy])
if self.isHalf is True:
npy = npy.astype("float16")
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and search_index:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
@ -207,14 +203,15 @@ class Pipeline(object):
# 推論実行
try:
with torch.no_grad():
audio1 = (
torch.clip(
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0].to(dtype=torch.float32),
-1.0,
1.0,
)
* 32767.5
).data.to(dtype=torch.int16)
with autocast(enabled=self.isHalf):
audio1 = (
torch.clip(
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0].to(dtype=torch.float32),
-1.0,
1.0,
)
* 32767.5
).data.to(dtype=torch.int16)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
print("11", e)