mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-02 16:23:58 +03:00
voras_betaの追加
This commit is contained in:
parent
c8dc2a2637
commit
daff5098f8
@ -65,9 +65,9 @@ class EnumInferenceTypes(Enum):
|
||||
pyTorchRVCNono = "pyTorchRVCNono"
|
||||
pyTorchRVCv2 = "pyTorchRVCv2"
|
||||
pyTorchRVCv2Nono = "pyTorchRVCv2Nono"
|
||||
pyTorchRVCv3 = "pyTorchRVCv3"
|
||||
pyTorchWebUI = "pyTorchWebUI"
|
||||
pyTorchWebUINono = "pyTorchWebUINono"
|
||||
pyTorchVoRASbeta = "pyTorchVoRASbeta"
|
||||
onnxRVC = "onnxRVC"
|
||||
onnxRVCNono = "onnxRVCNono"
|
||||
|
||||
|
@ -10,18 +10,15 @@ from data.ModelSlot import ModelSlot
|
||||
def _setInfoByPytorch(slot: ModelSlot):
|
||||
cpt = torch.load(slot.modelFile, map_location="cpu")
|
||||
config_len = len(cpt["config"])
|
||||
|
||||
if cpt["version"] == "v3":
|
||||
print(cpt["version"])
|
||||
if cpt["version"] == "voras_beta":
|
||||
slot.f0 = True if cpt["f0"] == 1 else False
|
||||
slot.modelType = EnumInferenceTypes.pyTorchRVCv3.value
|
||||
slot.embChannels = cpt["config"][17]
|
||||
slot.modelType = EnumInferenceTypes.pyTorchVoRASbeta.value
|
||||
slot.embChannels = 768
|
||||
slot.embOutputLayer = (
|
||||
cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9
|
||||
)
|
||||
if slot.embChannels == 256:
|
||||
slot.useFinalProj = True
|
||||
else:
|
||||
slot.useFinalProj = False
|
||||
slot.useFinalProj = False
|
||||
|
||||
slot.embedder = cpt["embedder_name"]
|
||||
if slot.embedder.endswith("768"):
|
||||
@ -33,7 +30,6 @@ def _setInfoByPytorch(slot: ModelSlot):
|
||||
slot.embedder = EnumEmbedderTypes.contentvec.value
|
||||
elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
|
||||
slot.embedder = EnumEmbedderTypes.hubert_jp.value
|
||||
print("nadare v3 loaded")
|
||||
else:
|
||||
raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
|
||||
|
||||
|
@ -8,7 +8,7 @@ from const import EnumInferenceTypes
|
||||
class Inferencer(Protocol):
|
||||
inferencerType: EnumInferenceTypes = EnumInferenceTypes.pyTorchRVC
|
||||
file: str
|
||||
isHalf: bool = True
|
||||
isHalf: bool = False
|
||||
gpu: int = 0
|
||||
|
||||
model: onnxruntime.InferenceSession | Any | None = None
|
||||
|
@ -8,7 +8,7 @@ from voice_changer.RVC.inferencer.RVCInferencerv2 import RVCInferencerv2
|
||||
from voice_changer.RVC.inferencer.RVCInferencerv2Nono import RVCInferencerv2Nono
|
||||
from voice_changer.RVC.inferencer.WebUIInferencer import WebUIInferencer
|
||||
from voice_changer.RVC.inferencer.WebUIInferencerNono import WebUIInferencerNono
|
||||
from voice_changer.RVC.inferencer.RVCInferencerv3 import RVCInferencerv3
|
||||
from voice_changer.RVC.inferencer.VorasInferencebeta import VoRASInferencer
|
||||
|
||||
class InferencerManager:
|
||||
currentInferencer: Inferencer | None = None
|
||||
@ -37,8 +37,8 @@ class InferencerManager:
|
||||
return RVCInferencerNono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2 or inferencerType == EnumInferenceTypes.pyTorchRVCv2.value:
|
||||
return RVCInferencerv2().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv3 or inferencerType == EnumInferenceTypes.pyTorchRVCv3.value:
|
||||
return RVCInferencerv3().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchVoRASbeta or inferencerType == EnumInferenceTypes.pyTorchVoRASbeta.value:
|
||||
return VoRASInferencer().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono or inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono.value:
|
||||
return RVCInferencerv2Nono().loadModel(file, gpu)
|
||||
elif inferencerType == EnumInferenceTypes.pyTorchWebUI or inferencerType == EnumInferenceTypes.pyTorchWebUI.value:
|
||||
|
@ -4,26 +4,25 @@ from torch import device
|
||||
from const import EnumInferenceTypes
|
||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||
from .model_v3.models import SynthesizerTrnMs256NSFSid
|
||||
from .voras_beta.models import Synthesizer
|
||||
|
||||
|
||||
class RVCInferencerv3(Inferencer):
|
||||
class VoRASInferencer(Inferencer):
|
||||
def loadModel(self, file: str, gpu: device):
|
||||
print("nadare v3 load start")
|
||||
super().setProps(EnumInferenceTypes.pyTorchRVCv3, file, True, gpu)
|
||||
super().setProps(EnumInferenceTypes.pyTorchVoRASbeta, file, False, gpu)
|
||||
|
||||
dev = DeviceManager.get_instance().getDevice(gpu)
|
||||
isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
|
||||
self.isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
|
||||
|
||||
cpt = torch.load(file, map_location="cpu")
|
||||
model = SynthesizerTrnMs256NSFSid(**cpt["params"])
|
||||
model = Synthesizer(**cpt["params"])
|
||||
|
||||
model.eval()
|
||||
model.load_state_dict(cpt["weight"], strict=False)
|
||||
model.remove_weight_norm()
|
||||
model.change_speaker(0)
|
||||
|
||||
model = model.to(dev)
|
||||
if isHalf:
|
||||
model = model.half()
|
||||
|
||||
self.model = model
|
||||
print("load model comprete")
|
@ -1,343 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
from . import commons
|
||||
from .modules import LayerNorm, LoRALinear1d
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
window_size=25,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.attn_layers[i](x, x, g, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask, g)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.attn_layers:
|
||||
l.remove_weight_norm()
|
||||
for l in self.ffn_layers:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
gin_channels,
|
||||
n_heads,
|
||||
p_dropout=0.0,
|
||||
window_size=None,
|
||||
heads_share=False,
|
||||
block_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_k = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_v = LoRALinear1d(channels, channels, gin_channels, 2)
|
||||
self.conv_qkw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
|
||||
self.conv_vw = weight_norm(nn.Conv1d(channels, channels, 5, 1, groups=channels, padding=2))
|
||||
self.conv_o = LoRALinear1d(channels, out_channels, gin_channels, 2)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
self.emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev
|
||||
)
|
||||
|
||||
def forward(self, x, c, g, attn_mask=None):
|
||||
q = self.conv_qkw(self.conv_q(x, g))
|
||||
k = self.conv_qkw(self.conv_k(c, g))
|
||||
v = self.conv_vw(self.conv_v(c, g))
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x, g)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(
|
||||
query / math.sqrt(self.k_channels), key_relative_embeddings
|
||||
)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(
|
||||
device=scores.device, dtype=scores.dtype
|
||||
)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert (
|
||||
t_s == t_t
|
||||
), "Local attention is only available for self-attention."
|
||||
block_mask = (
|
||||
torch.ones_like(scores)
|
||||
.triu(-self.block_length)
|
||||
.tril(self.block_length)
|
||||
)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_v, t_s
|
||||
)
|
||||
output = output + self._matmul_with_relative_values(
|
||||
relative_weights, value_relative_embeddings
|
||||
)
|
||||
output = (
|
||||
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
||||
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||
)
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[
|
||||
:, slice_start_position:slice_end_position
|
||||
]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(
|
||||
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
||||
:, :, :length, length - 1 :
|
||||
]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(
|
||||
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
||||
)
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.conv_q.remove_weight_norm()
|
||||
self.conv_k.remove_weight_norm()
|
||||
self.conv_v.remove_weight_norm()
|
||||
self.conv_o.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_qkw)
|
||||
remove_weight_norm(self.conv_vw)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_channels,
|
||||
gin_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation=None,
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
self.conv_1 = LoRALinear1d(in_channels, filter_channels, gin_channels, 2)
|
||||
self.conv_2 = LoRALinear1d(filter_channels, out_channels, gin_channels, 2)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x = self.conv_1(x * x_mask, g)
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask, g)
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.conv_1.remove_weight_norm()
|
||||
self.conv_2.remove_weight_norm()
|
@ -1,522 +0,0 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import attentions, commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .modules import (CausalConvTranspose1d, ConvNext2d, DilatedCausalConv1d,
|
||||
LoRALinear1d, ResBlock1, WaveConv1D)
|
||||
|
||||
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels: int,
|
||||
hidden_channels: int,
|
||||
filter_channels: int,
|
||||
emb_channels: int,
|
||||
gin_channels: int,
|
||||
n_heads: int,
|
||||
n_layers: int,
|
||||
kernel_size: int,
|
||||
p_dropout: int,
|
||||
f0: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.emb_g = nn.Conv1d(gin_channels, hidden_channels, 1)
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths, g):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask, g)
|
||||
x = self.proj(x)
|
||||
|
||||
return x, None, x_mask
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = torch.ones_like(f0)
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
gin_channels,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Conv1d(gin_channels, harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
sine_raw = torch.transpose(sine_wavs, 1, 2).to(device=x.device, dtype=x.dtype)
|
||||
return sine_raw, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
initial_channel,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
harmonic_num=16,
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.upsample_rates = upsample_rates
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr, gin_channels=gin_channels, harmonic_num=harmonic_num, is_half=is_half
|
||||
)
|
||||
self.gpre = Conv1d(gin_channels, initial_channel, 1)
|
||||
self.conv_pre = ResBlock1(initial_channel, upsample_initial_channel, gin_channels, [7] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, 2)
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
self.resblocks = nn.ModuleList()
|
||||
c_cur = upsample_initial_channel
|
||||
for i, u in enumerate(upsample_rates):
|
||||
c_pre = c_cur
|
||||
c_cur = c_pre // 2
|
||||
self.ups.append(
|
||||
CausalConvTranspose1d(
|
||||
c_pre,
|
||||
c_pre,
|
||||
kernel_rate=3,
|
||||
stride=u,
|
||||
groups=c_pre,
|
||||
)
|
||||
)
|
||||
self.resblocks.append(ResBlock1(c_pre, c_cur, gin_channels, [11] * 5, [1] * 5, [1, 2, 4, 8, 1], 1, r=2))
|
||||
self.conv_post = DilatedCausalConv1d(c_cur, 1, 5, stride=1, groups=1, dilation=1, bias=False)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.noise_pre = LoRALinear1d(1 + harmonic_num, c_pre, gin_channels, r=2+harmonic_num)
|
||||
for i, u in enumerate(upsample_rates[::-1]):
|
||||
c_pre = c_pre * 2
|
||||
c_cur = c_cur * 2
|
||||
if i + 1 < len(upsample_rates):
|
||||
self.noise_convs.append(DilatedCausalConv1d(c_cur, c_pre, kernel_size=u*3, stride=u, groups=c_cur, dilation=1))
|
||||
else:
|
||||
self.noise_convs.append(DilatedCausalConv1d(c_cur, initial_channel, kernel_size=u*3, stride=u, groups=math.gcd(c_cur, initial_channel), dilation=1))
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, x_mask, f0f, g):
|
||||
har_source, noi_source, uv = self.m_source(f0f, self.upp)
|
||||
har_source = self.noise_pre(har_source, g)
|
||||
x_sources = [har_source]
|
||||
for c in self.noise_convs:
|
||||
har_source = c(har_source)
|
||||
x_sources.append(har_source)
|
||||
|
||||
x = x + x_sources[-1]
|
||||
x = x + self.gpre(g)
|
||||
x = self.conv_pre(x, x_mask, g)
|
||||
for i, u in enumerate(self.upsample_rates):
|
||||
x_mask = torch.repeat_interleave(x_mask, u, 2)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
x = self.resblocks[i](x + x_sources[-i-2], x_mask, g)
|
||||
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
if x_mask is not None:
|
||||
x *= x_mask
|
||||
x = torch.tanh(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.noise_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFSid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
emb_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.sr = sr
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
|
||||
self.emb_pitch = nn.Embedding(256, emb_channels) # pitch 256
|
||||
self.dec = GeneratorNSF(
|
||||
emb_channels,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
)
|
||||
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print(
|
||||
"gin_channels:",
|
||||
gin_channels,
|
||||
"self.spk_embed_dim:",
|
||||
self.spk_embed_dim,
|
||||
"emb_channels:",
|
||||
emb_channels,
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||
): # 这里ds是id,[bs,1]
|
||||
# print(1,pitch.shape)#[bs,t]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
# m_p, _, x_mask = self.enc_p(phone, pitch, phone_lengths, g)
|
||||
# z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
# z_p = self.flow(m_p * x_mask, x_mask, g=g)
|
||||
|
||||
x = phone + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
|
||||
phone.dtype
|
||||
)
|
||||
|
||||
m_p_slice, ids_slice = commons.rand_slice_segments(
|
||||
x, phone_lengths, self.segment_size
|
||||
)
|
||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
|
||||
# print(-2,pitchf.shape,z_slice.shape)
|
||||
o = self.dec(m_p_slice, mask_slice, pitchf, g)
|
||||
return o, ids_slice, x_mask, g
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
x = phone + self.emb_pitch(pitch)
|
||||
x = torch.transpose(x, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(
|
||||
phone.dtype
|
||||
)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], x_mask, nsff0, g)
|
||||
return o, x_mask, (None, None, None, None)
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels: int,
|
||||
filter_channels: int,
|
||||
gin_channels: int,
|
||||
n_heads: int,
|
||||
n_layers: int,
|
||||
kernel_size: int,
|
||||
p_dropout: int,
|
||||
):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
self.convs = WaveConv1D(2, hidden_channels, gin_channels, [10, 7, 7, 7, 5, 3, 3], [5, 4, 4, 4, 3, 2, 2], [1] * 7, hidden_channels // 2, False)
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, gin_channels, n_heads, n_layers//2, kernel_size, p_dropout
|
||||
)
|
||||
self.cross = weight_norm(torch.nn.Conv1d(gin_channels, hidden_channels, 1, 1))
|
||||
self.conv_post = weight_norm(torch.nn.Conv1d(hidden_channels, 1, 3, 1, padding=get_padding(5, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.convs(x)
|
||||
x_mask = torch.ones([x.shape[0], 1, x.shape[2]], device=x.device, dtype=x.dtype)
|
||||
x = self.encoder(x, x_mask, g)
|
||||
fmap = [x]
|
||||
x = x + x * self.cross(g)
|
||||
y = self.conv_post(x)
|
||||
return y, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
self.init_kernel_size = upsample_rates[-1] * 3
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
N = len(upsample_rates)
|
||||
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
|
||||
self.convs = nn.ModuleList()
|
||||
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
|
||||
self.convs.append(
|
||||
ConvNext2d(
|
||||
final_dim // (2 ** (N - i)),
|
||||
final_dim // (2 ** (N - i - 1)),
|
||||
gin_channels,
|
||||
(u*3, 1),
|
||||
(u, 1),
|
||||
4,
|
||||
r=2
|
||||
)
|
||||
)
|
||||
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (n_pad, 0), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
x = torch.flip(x, dims=[2])
|
||||
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
|
||||
x = self.init_conv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = torch.flip(x, dims=[2])
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
x = l(x, g)
|
||||
if i >= 1:
|
||||
fmap.append(x)
|
||||
|
||||
x = F.pad(x, [0, 0, 2, 0], mode="constant")
|
||||
x = self.conv_post(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
|
||||
# discs = [DiscriminatorS(hidden_channels, filter_channels, gin_channels, n_heads, n_layers, kernel_size, p_dropout)]
|
||||
discs = [
|
||||
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
|
||||
]
|
||||
self.ups = np.prod(upsample_rates)
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat, g):
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y, g)
|
||||
y_d_g, fmap_g = d(y_hat, g)
|
||||
# for j in range(len(fmap_r)):
|
||||
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
||||
y_d_rs.append(y_d_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_rs.append(fmap_r)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
@ -1,626 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
hidden_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
p_dropout,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers - 1):
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
groups=channels,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
p_dropout=0,
|
||||
):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = (kernel_size,)
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(
|
||||
gin_channels, 2 * hidden_channels * n_layers, 1
|
||||
)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class DilatedCausalConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
|
||||
super(DilatedCausalConv1d, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
|
||||
init_weights(self.conv)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.flip(x, [2])
|
||||
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
|
||||
size = x.shape[2] // self.stride
|
||||
x = self.conv(x)[:, :, :size]
|
||||
x = torch.flip(x, [2])
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class CausalConvTranspose1d(nn.Module):
|
||||
"""
|
||||
padding = 0, dilation = 1のとき
|
||||
|
||||
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
|
||||
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
|
||||
output_paddingいらないね
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
|
||||
super(CausalConvTranspose1d, self).__init__()
|
||||
kernel_size = kernel_rate * stride
|
||||
self.trim_size = (kernel_rate - 1) * stride
|
||||
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return x[:, :, :-self.trim_size]
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class LoRALinear1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
init_weights(self.main_fc)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
|
||||
def forward(self, x, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
x = self.main_fc(x) + torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
|
||||
class LoRALinear2d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
|
||||
def forward(self, x, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
x = self.main_fc(x) + torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
|
||||
class WaveConv1D(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r, use_spectral_norm=False):
|
||||
super(WaveConv1D, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.convs = []
|
||||
# self.norms = []
|
||||
self.convs.append(LoRALinear1d(in_channels, inner_channels, gin_channels, r))
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations), start=1):
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, k, s, dilation=d, groups=inner_channels, padding=get_padding(k, d))))
|
||||
if i < len(kernel_sizes):
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, inner_channels, 1, 1)))
|
||||
else:
|
||||
self.convs.append(norm_f(Conv1d(inner_channels, out_channels, 1, 1)))
|
||||
self.convs = nn.ModuleList(self.convs)
|
||||
|
||||
def forward(self, x, g, x_mask=None):
|
||||
for i, l in enumerate(self.convs):
|
||||
if i % 2:
|
||||
x_ = l(x)
|
||||
else:
|
||||
x_ = l(x, g)
|
||||
x = F.leaky_relu(x_, modules.LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
x *= x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for i, c in enumerate(self.convs):
|
||||
if i % 2:
|
||||
remove_weight_norm(c)
|
||||
else:
|
||||
c.remove_weight_norm()
|
||||
|
||||
|
||||
class MBConv2d(torch.nn.Module):
|
||||
"""
|
||||
Causal MBConv2D
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(MBConv2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.pre_pointwise = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.depthwise = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
|
||||
self.post_pointwise = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.pre_pointwise(x, g)
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.depthwise(x)
|
||||
x = self.post_pointwise(x, g)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNext2d(torch.nn.Module):
|
||||
"""
|
||||
Causal ConvNext Block
|
||||
stride = 1 only
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(ConvNext2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.act = nn.GELU()
|
||||
self.norm = LayerNorm(in_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.pwconv2(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.dwconv)
|
||||
|
||||
|
||||
class SqueezeExcitation1D(torch.nn.Module):
|
||||
def __init__(self, input_channels, squeeze_channels, gin_channels, use_spectral_norm=False):
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
super(SqueezeExcitation1D, self).__init__()
|
||||
self.fc1 = LoRALinear1d(input_channels, squeeze_channels, gin_channels, 2)
|
||||
self.fc2 = LoRALinear1d(squeeze_channels, input_channels, gin_channels, 2)
|
||||
|
||||
def _scale(self, x, x_mask, g):
|
||||
x_length = torch.sum(x_mask, dim=2, keepdim=True)
|
||||
x_length = torch.maximum(x_length, torch.ones_like(x_length))
|
||||
scale = torch.sum(x * x_mask, dim=2, keepdim=True) / x_length
|
||||
scale = self.fc1(scale, g)
|
||||
scale = F.leaky_relu(scale, modules.LRELU_SLOPE)
|
||||
scale = self.fc2(scale, g)
|
||||
return torch.sigmoid(scale)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
scale = self._scale(x, x_mask, g)
|
||||
return scale * x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.fc1.remove_weight_norm()
|
||||
self.fc2.remove_weight_norm()
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_sizes, strides, dilations, extend_ratio, r):
|
||||
super(ResBlock1, self).__init__()
|
||||
norm_f = weight_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.dconvs = nn.ModuleList()
|
||||
self.pconvs = nn.ModuleList()
|
||||
# self.ses = nn.ModuleList()
|
||||
self.norms = nn.ModuleList()
|
||||
self.init_conv = LoRALinear1d(in_channels, inner_channels, gin_channels, r)
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
|
||||
self.norms.append(LayerNorm(inner_channels))
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
|
||||
if i < len(kernel_sizes) - 1:
|
||||
self.pconvs.append(LoRALinear1d(inner_channels, inner_channels, gin_channels, r))
|
||||
self.out_conv = LoRALinear1d(inner_channels, out_channels, gin_channels, r)
|
||||
init_weights(self.init_conv)
|
||||
init_weights(self.out_conv)
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x *= x_mask
|
||||
x = self.init_conv(x, g)
|
||||
for i in range(len(self.dconvs)):
|
||||
x *= x_mask
|
||||
x = self.norms[i](x)
|
||||
x_ = self.dconvs[i](x)
|
||||
x_ = F.leaky_relu(x_, modules.LRELU_SLOPE)
|
||||
if i < len(self.dconvs) - 1:
|
||||
x = x + self.pconvs[i](x_, g)
|
||||
x = self.out_conv(x_, g)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.pconvs:
|
||||
c.remove_weight_norm()
|
||||
self.init_conv.remove_weight_norm()
|
||||
self.out_conv.remove_weight_norm()
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=p_dropout,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
num_bins=10,
|
||||
tail_bound=5.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(
|
||||
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
||||
)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
||||
self.filter_channels
|
||||
)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
@ -32,27 +32,17 @@ class TrainConfigData(BaseModel):
|
||||
|
||||
|
||||
class TrainConfigModel(BaseModel):
|
||||
emb_channels: int
|
||||
inter_channels: int
|
||||
hidden_channels: int
|
||||
filter_channels: int
|
||||
n_heads: int
|
||||
n_layers: int
|
||||
kernel_size: int
|
||||
p_dropout: int
|
||||
resblock: str
|
||||
resblock_kernel_sizes: List[int]
|
||||
resblock_dilation_sizes: List[List[int]]
|
||||
upsample_rates: List[int]
|
||||
upsample_initial_channel: int
|
||||
upsample_kernel_sizes: List[int]
|
||||
use_spectral_norm: bool
|
||||
gin_channels: int
|
||||
emb_channels: int
|
||||
spk_embed_dim: int
|
||||
|
||||
|
||||
class TrainConfig(BaseModel):
|
||||
version: Literal["v1", "v2"] = "v2"
|
||||
version: Literal["voras"] = "voras"
|
||||
train: TrainConfigTrain
|
||||
data: TrainConfigData
|
||||
model: TrainConfigModel
|
238
server/voice_changer/RVC/inferencer/voras_beta/models.py
Normal file
238
server/voice_changer/RVC/inferencer/voras_beta/models.py
Normal file
@ -0,0 +1,238 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding
|
||||
from .modules import (ConvNext2d, HarmonicEmbedder, IMDCTSymExpHead,
|
||||
LoRALinear1d, SnakeFilter, WaveBlock)
|
||||
|
||||
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
sr2sr = {
|
||||
"24k": 24000,
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
class GeneratorVoras(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
emb_channels,
|
||||
inter_channels,
|
||||
gin_channels,
|
||||
n_layers,
|
||||
sr,
|
||||
hop_length,
|
||||
):
|
||||
super(GeneratorVoras, self).__init__()
|
||||
self.n_layers = n_layers
|
||||
self.emb_pitch = HarmonicEmbedder(768, inter_channels, gin_channels, 16, 15) # # pitch 256
|
||||
self.plinear = LoRALinear1d(inter_channels, inter_channels, gin_channels, r=8)
|
||||
self.glinear = weight_norm(nn.Conv1d(gin_channels, inter_channels, 1))
|
||||
self.resblocks = nn.ModuleList()
|
||||
self.init_linear = LoRALinear1d(emb_channels, inter_channels, gin_channels, r=4)
|
||||
for _ in range(self.n_layers):
|
||||
self.resblocks.append(WaveBlock(inter_channels, gin_channels, [9] * 2, [1] * 2, [1, 9], 2, r=4))
|
||||
self.head = IMDCTSymExpHead(inter_channels, gin_channels, hop_length, padding="center", sample_rate=sr)
|
||||
self.post = SnakeFilter(4, 8, 9, 2, eps=1e-5)
|
||||
|
||||
def forward(self, x, pitchf, x_mask, g):
|
||||
x = self.init_linear(x, g) + self.plinear(self.emb_pitch(pitchf, g), g) + self.glinear(g)
|
||||
for i in range(self.n_layers):
|
||||
x = self.resblocks[i](x, x_mask, g)
|
||||
x = x * x_mask
|
||||
x = self.head(x, g)
|
||||
x = self.post(x)
|
||||
return torch.tanh(x)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.plinear.remove_weight_norm()
|
||||
remove_weight_norm(self.glinear)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
self.init_linear.remove_weight_norm()
|
||||
self.head.remove_weight_norm()
|
||||
self.post.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.plinear.fix_speaker(g)
|
||||
self.init_linear.fix_speaker(g)
|
||||
for l in self.resblocks:
|
||||
l.fix_speaker(g)
|
||||
self.head.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.plinear.unfix_speaker(g)
|
||||
self.init_linear.unfix_speaker(g)
|
||||
for l in self.resblocks:
|
||||
l.unfix_speaker(g)
|
||||
self.head.unfix_speaker(g)
|
||||
|
||||
|
||||
class Synthesizer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
segment_size,
|
||||
n_fft,
|
||||
hop_length,
|
||||
inter_channels,
|
||||
n_layers,
|
||||
spk_embed_dim,
|
||||
gin_channels,
|
||||
emb_channels,
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.segment_size = segment_size
|
||||
self.n_fft = n_fft
|
||||
self.hop_length = hop_length
|
||||
self.inter_channels = inter_channels
|
||||
self.n_layers = n_layers
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.gin_channels = gin_channels
|
||||
self.emb_channels = emb_channels
|
||||
self.sr = sr
|
||||
|
||||
self.dec = GeneratorVoras(
|
||||
emb_channels,
|
||||
inter_channels,
|
||||
gin_channels,
|
||||
n_layers,
|
||||
sr,
|
||||
hop_length
|
||||
)
|
||||
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print(
|
||||
"gin_channels:",
|
||||
gin_channels,
|
||||
"self.spk_embed_dim:",
|
||||
self.spk_embed_dim,
|
||||
"emb_channels:",
|
||||
emb_channels,
|
||||
)
|
||||
self.speaker = None
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
|
||||
def change_speaker(self, sid: int):
|
||||
if self.speaker is not None:
|
||||
g = self.emb_g(torch.from_numpy(np.array(self.speaker))).unsqueeze(-1)
|
||||
self.dec.unfix_speaker(g)
|
||||
g = self.emb_g(torch.from_numpy(np.array(sid))).unsqueeze(-1)
|
||||
self.dec.fix_speaker(g)
|
||||
self.speaker = sid
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds
|
||||
):
|
||||
g = self.emb_g(ds).unsqueeze(-1)
|
||||
x = torch.transpose(phone, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
|
||||
x_slice, ids_slice = commons.rand_slice_segments(
|
||||
x, phone_lengths, self.segment_size
|
||||
)
|
||||
pitchf_slice = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
mask_slice = commons.slice_segments(x_mask, ids_slice, self.segment_size)
|
||||
o = self.dec(x_slice, pitchf_slice, mask_slice, g)
|
||||
return o, ids_slice, x_mask, g
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
x = torch.transpose(phone, 1, -1)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(phone_lengths, x.size(2)), 1).to(phone.dtype)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], nsff0, x_mask, g)
|
||||
return o, x_mask, (None, None, None, None)
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, gin_channels, upsample_rates, final_dim=256, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
self.init_kernel_size = upsample_rates[-1] * 3
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
N = len(upsample_rates)
|
||||
self.init_conv = norm_f(Conv2d(1, final_dim // (2 ** (N - 1)), (self.init_kernel_size, 1), (upsample_rates[-1], 1)))
|
||||
self.convs = nn.ModuleList()
|
||||
for i, u in enumerate(upsample_rates[::-1][1:], start=1):
|
||||
self.convs.append(
|
||||
ConvNext2d(
|
||||
final_dim // (2 ** (N - i)),
|
||||
final_dim // (2 ** (N - i - 1)),
|
||||
gin_channels,
|
||||
(u*3, 1),
|
||||
(u, 1),
|
||||
4,
|
||||
r=2 + i//2
|
||||
)
|
||||
)
|
||||
self.conv_post = weight_norm(Conv2d(final_dim, 1, (3, 1), (1, 1)))
|
||||
|
||||
def forward(self, x, g):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (n_pad, 0), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
x = torch.flip(x, dims=[2])
|
||||
x = F.pad(x, [0, 0, 0, self.init_kernel_size - 1], mode="constant")
|
||||
x = self.init_conv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = torch.flip(x, dims=[2])
|
||||
fmap.append(x)
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
x = l(x, g)
|
||||
fmap.append(x)
|
||||
|
||||
x = F.pad(x, [0, 0, 2, 0], mode="constant")
|
||||
x = self.conv_post(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, upsample_rates, gin_channels, periods=[2, 3, 5, 7, 11, 17], **kwargs):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
|
||||
discs = [
|
||||
DiscriminatorP(i, gin_channels, upsample_rates, use_spectral_norm=False) for i in periods
|
||||
]
|
||||
self.ups = np.prod(upsample_rates)
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat, g):
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(y, g)
|
||||
y_d_g, fmap_g = d(y_hat, g)
|
||||
y_d_rs.append(y_d_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_rs.append(fmap_r)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
496
server/voice_changer/RVC/inferencer/voras_beta/modules.py
Normal file
496
server/voice_changer/RVC/inferencer/voras_beta/modules.py
Normal file
@ -0,0 +1,496 @@
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import scipy
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
||||
|
||||
from . import commons, modules
|
||||
from .commons import get_padding, init_weights
|
||||
from .transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class HarmonicEmbedder(nn.Module):
|
||||
def __init__(self, num_embeddings, embedding_dim, gin_channels, num_head, num_harmonic=0, f0_min=50., f0_max=1100., device="cuda"):
|
||||
super(HarmonicEmbedder, self).__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.num_head = num_head
|
||||
self.num_harmonic = num_harmonic
|
||||
|
||||
f0_mel_min = np.log(1 + f0_min / 700)
|
||||
f0_mel_max = np.log(1 + f0_max * (1 + num_harmonic) / 700)
|
||||
self.sequence = torch.from_numpy(np.linspace(f0_mel_min, f0_mel_max, num_embeddings-2))
|
||||
self.emb_layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
self.linear_q = Conv1d(gin_channels, num_head * (1 + num_harmonic), 1)
|
||||
self.weight = None
|
||||
|
||||
def forward(self, x, g):
|
||||
b, l = x.size()
|
||||
non_zero = (x != 0.).to(dtype=torch.long).unsqueeze(1)
|
||||
mel = torch.log(1 + x / 700).unsqueeze(1)
|
||||
harmonies = torch.arange(1 + self.num_harmonic, device=x.device, dtype=x.dtype).view(1, 1 + self.num_harmonic, 1) + 1.
|
||||
ix = torch.searchsorted(self.sequence.to(x.device), mel * harmonies).to(x.device) + 1
|
||||
ix = ix * non_zero
|
||||
emb = self.emb_layer(ix).transpose(1, 3).reshape(b, self.num_head, self.embedding_dim // self.num_head, 1 + self.num_harmonic, l)
|
||||
if self.weight is None:
|
||||
weight = torch.nn.functional.softmax(self.linear_q(g).reshape(b, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
|
||||
else:
|
||||
weight = self.weight
|
||||
res = torch.sum(emb * weight, dim=3).reshape(b, self.embedding_dim, l)
|
||||
return res
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.weight = torch.nn.functional.softmax(self.linear_q(g).reshape(1, self.num_head, 1, 1 + self.num_harmonic, 1), 3)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.weight = None
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class DilatedCausalConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, dilation=1, bias=True):
|
||||
super(DilatedCausalConv1d, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.conv = weight_norm(nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups, dilation=dilation, bias=bias))
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.flip(x, [2])
|
||||
x = F.pad(x, [0, (self.kernel_size - 1) * self.dilation], mode="constant", value=0.)
|
||||
size = x.shape[2] // self.stride
|
||||
x = self.conv(x)[:, :, :size]
|
||||
x = torch.flip(x, [2])
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class CausalConvTranspose1d(nn.Module):
|
||||
"""
|
||||
padding = 0, dilation = 1のとき
|
||||
|
||||
Lout = (Lin - 1) * stride + kernel_rate * stride + output_padding
|
||||
Lout = Lin * stride + (kernel_rate - 1) * stride + output_padding
|
||||
output_paddingいらないね
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, kernel_rate=3, stride=1, groups=1):
|
||||
super(CausalConvTranspose1d, self).__init__()
|
||||
kernel_size = kernel_rate * stride
|
||||
self.trim_size = (kernel_rate - 1) * stride
|
||||
self.conv = weight_norm(nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=stride, groups=groups))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return x[:, :, :-self.trim_size]
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
class LoRALinear1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv1d(in_channels, out_channels, 1))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
self.speaker_fixed = False
|
||||
|
||||
def forward(self, x, g):
|
||||
x_ = self.main_fc(x)
|
||||
if not self.speaker_fixed:
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
l = torch.einsum("brl,brc->bcl", torch.einsum("bcl,bcr->brl", x, a_in), a_out)
|
||||
x_ = x_ + l
|
||||
return x_
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.speaker_fixed = True
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
|
||||
self.main_fc.weight.data.add_(weight)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.speaker_fixed = False
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2)
|
||||
self.main_fc.weight.data.sub_(weight)
|
||||
|
||||
|
||||
class LoRALinear2d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, info_channels, r):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.info_channels = info_channels
|
||||
self.r = r
|
||||
self.main_fc = weight_norm(nn.Conv2d(in_channels, out_channels, (1, 1), (1, 1)))
|
||||
self.adapter_in = nn.Conv1d(info_channels, in_channels * r, 1)
|
||||
self.adapter_out = nn.Conv1d(info_channels, out_channels * r, 1)
|
||||
nn.init.normal_(self.adapter_in.weight.data, 0, 0.01)
|
||||
nn.init.constant_(self.adapter_out.weight.data, 1e-6)
|
||||
self.adapter_in = weight_norm(self.adapter_in)
|
||||
self.adapter_out = weight_norm(self.adapter_out)
|
||||
self.speaker_fixed = False
|
||||
|
||||
def forward(self, x, g):
|
||||
x_ = self.main_fc(x)
|
||||
if not self.speaker_fixed:
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
l = torch.einsum("brhw,brc->bchw", torch.einsum("bchw,bcr->brhw", x, a_in), a_out)
|
||||
x_ = x_ + l
|
||||
return x_
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.main_fc)
|
||||
remove_weight_norm(self.adapter_in)
|
||||
remove_weight_norm(self.adapter_out)
|
||||
|
||||
def fix_speaker(self, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
|
||||
self.main_fc.weight.data.add_(weight)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
a_in = self.adapter_in(g).view(-1, self.in_channels, self.r)
|
||||
a_out = self.adapter_out(g).view(-1, self.r, self.out_channels)
|
||||
weight = torch.einsum("bir,bro->oi", a_in, a_out).unsqueeze(2).unsqueeze(3)
|
||||
self.main_fc.weight.data.sub_(weight)
|
||||
|
||||
|
||||
class MBConv2d(torch.nn.Module):
|
||||
"""
|
||||
Causal MBConv2D
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(MBConv2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.dwconv = norm_f(Conv2d(inner_channels, inner_channels, kernel_size, stride, groups=inner_channels))
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.pwnorm = LayerNorm(in_channels)
|
||||
self.dwnorm = LayerNorm(inner_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = self.pwnorm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwnorm(x)
|
||||
x = self.dwconv(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.pwconv2(x, g)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
return x
|
||||
|
||||
class ConvNext2d(torch.nn.Module):
|
||||
"""
|
||||
Causal ConvNext Block
|
||||
stride = 1 only
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, gin_channels, kernel_size, stride, extend_ratio, r, use_spectral_norm=False):
|
||||
super(ConvNext2d, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
inner_channels = int(in_channels * extend_ratio)
|
||||
self.kernel_size = kernel_size
|
||||
self.dwconv = norm_f(Conv2d(in_channels, in_channels, kernel_size, stride, groups=in_channels))
|
||||
self.pwconv1 = LoRALinear2d(in_channels, inner_channels, gin_channels, r=r)
|
||||
self.pwconv2 = LoRALinear2d(inner_channels, out_channels, gin_channels, r=r)
|
||||
self.act = nn.GELU()
|
||||
self.norm = LayerNorm(in_channels)
|
||||
|
||||
def forward(self, x, g):
|
||||
x = F.pad(x, [0, 0, self.kernel_size[0] - 1, 0], mode="constant")
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x, g)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x, g)
|
||||
x = self.act(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.dwconv)
|
||||
|
||||
|
||||
class WaveBlock(torch.nn.Module):
|
||||
def __init__(self, inner_channels, gin_channels, kernel_sizes, strides, dilations, extend_rate, r):
|
||||
super(WaveBlock, self).__init__()
|
||||
norm_f = weight_norm
|
||||
extend_channels = int(inner_channels * extend_rate)
|
||||
self.dconvs = nn.ModuleList()
|
||||
self.p1convs = nn.ModuleList()
|
||||
self.p2convs = nn.ModuleList()
|
||||
self.norms = nn.ModuleList()
|
||||
self.act = nn.GELU()
|
||||
|
||||
# self.ses = nn.ModuleList()
|
||||
# self.norms = []
|
||||
for i, (k, s, d) in enumerate(zip(kernel_sizes, strides, dilations)):
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, k, stride=s, dilation=d, groups=inner_channels))
|
||||
self.p1convs.append(LoRALinear1d(inner_channels, extend_channels, gin_channels, r))
|
||||
self.p2convs.append(LoRALinear1d(extend_channels, inner_channels, gin_channels, r))
|
||||
self.norms.append(LayerNorm(inner_channels))
|
||||
|
||||
def forward(self, x, x_mask, g):
|
||||
x *= x_mask
|
||||
for i in range(len(self.dconvs)):
|
||||
residual = x.clone()
|
||||
x = self.dconvs[i](x)
|
||||
x = self.norms[i](x)
|
||||
x *= x_mask
|
||||
x = self.p1convs[i](x, g)
|
||||
x = self.act(x)
|
||||
x = self.p2convs[i](x, g)
|
||||
x = residual + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.p1convs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.p2convs:
|
||||
c.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
for c in self.p1convs:
|
||||
c.fix_speaker(g)
|
||||
for c in self.p2convs:
|
||||
c.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
for c in self.p1convs:
|
||||
c.unfix_speaker(g)
|
||||
for c in self.p2convs:
|
||||
c.unfix_speaker(g)
|
||||
|
||||
|
||||
class SnakeFilter(torch.nn.Module):
|
||||
"""
|
||||
Adaptive filter using snakebeta
|
||||
"""
|
||||
def __init__(self, channels, groups, kernel_size, num_layers, eps=1e-6):
|
||||
super(SnakeFilter, self).__init__()
|
||||
self.eps = eps
|
||||
self.num_layers = num_layers
|
||||
inner_channels = channels * groups
|
||||
self.init_conv = DilatedCausalConv1d(1, inner_channels, kernel_size)
|
||||
self.dconvs = torch.nn.ModuleList()
|
||||
self.pconvs = torch.nn.ModuleList()
|
||||
self.post_conv = DilatedCausalConv1d(inner_channels+1, 1, kernel_size, bias=False)
|
||||
|
||||
for i in range(self.num_layers):
|
||||
self.dconvs.append(DilatedCausalConv1d(inner_channels, inner_channels, kernel_size, stride=1, groups=inner_channels, dilation=kernel_size ** (i + 1)))
|
||||
self.pconvs.append(weight_norm(Conv1d(inner_channels, inner_channels, 1, groups=groups)))
|
||||
self.snake_alpha = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
|
||||
self.snake_beta = torch.nn.Parameter(torch.zeros(inner_channels), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
y = x.clone()
|
||||
x = self.init_conv(x)
|
||||
for i in range(self.num_layers):
|
||||
# snake activation
|
||||
x = self.dconvs[i](x)
|
||||
x = self.pconvs[i](x)
|
||||
x = x + (1.0 / torch.clip(self.snake_beta.unsqueeze(0).unsqueeze(-1), min=self.eps)) * torch.pow(torch.sin(x * self.snake_alpha.unsqueeze(0).unsqueeze(-1)), 2)
|
||||
x = torch.cat([x, y], 1)
|
||||
x = self.post_conv(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.init_conv.remove_weight_norm()
|
||||
for c in self.dconvs:
|
||||
c.remove_weight_norm()
|
||||
for c in self.pconvs:
|
||||
remove_weight_norm(c)
|
||||
self.post_conv.remove_weight_norm()
|
||||
|
||||
"""
|
||||
https://github.com/charactr-platform/vocos/blob/main/vocos/heads.py
|
||||
"""
|
||||
class FourierHead(nn.Module):
|
||||
"""Base class for inverse fourier modules."""
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
raise NotImplementedError("Subclasses must implement the forward method.")
|
||||
|
||||
|
||||
class IMDCT(nn.Module):
|
||||
"""
|
||||
Inverse Modified Discrete Cosine Transform (IMDCT) module.
|
||||
|
||||
Args:
|
||||
frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(self, frame_len: int, padding: str = "same"):
|
||||
super().__init__()
|
||||
if padding not in ["center", "same"]:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
self.padding = padding
|
||||
self.frame_len = frame_len * 2
|
||||
N = frame_len
|
||||
n0 = (N + 1) / 2
|
||||
window = torch.from_numpy(scipy.signal.cosine(N * 2)).float()
|
||||
self.register_buffer("window", window)
|
||||
|
||||
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
|
||||
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
|
||||
self.register_buffer("pre_twiddle", torch.view_as_real(pre_twiddle))
|
||||
self.register_buffer("post_twiddle", torch.view_as_real(post_twiddle))
|
||||
|
||||
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
|
||||
|
||||
Args:
|
||||
X (Tensor): Input MDCT coefficients of shape (B, N, L), where B is the batch size,
|
||||
L is the number of frames, and N is the number of frequency bins.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
|
||||
"""
|
||||
X = X.transpose(1, 2)
|
||||
B, L, N = X.shape
|
||||
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
|
||||
Y[..., :N] = X
|
||||
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
|
||||
y = torch.fft.ifft(Y * torch.view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1)
|
||||
y = torch.real(y * torch.view_as_complex(self.post_twiddle).expand(y.shape)) * np.sqrt(N) * np.sqrt(2)
|
||||
result = y * self.window.expand(y.shape)
|
||||
output_size = (1, (L + 1) * N)
|
||||
audio = torch.nn.functional.fold(
|
||||
result.transpose(1, 2),
|
||||
output_size=output_size,
|
||||
kernel_size=(1, self.frame_len),
|
||||
stride=(1, self.frame_len // 2),
|
||||
)[:, 0, 0, :]
|
||||
|
||||
if self.padding == "center":
|
||||
pad = self.frame_len // 2
|
||||
elif self.padding == "same":
|
||||
pad = self.frame_len // 4
|
||||
else:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
|
||||
audio = audio[:, pad:-pad]
|
||||
return audio.unsqueeze(1)
|
||||
|
||||
|
||||
class IMDCTSymExpHead(FourierHead):
|
||||
"""
|
||||
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
||||
|
||||
Args:
|
||||
dim (int): Hidden dimension of the model.
|
||||
mdct_frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
||||
based on perceptual scaling. Defaults to None.
|
||||
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim: int, gin_channels: int, mdct_frame_len: int, padding: str = "same", sample_rate: int = 24000,
|
||||
):
|
||||
super().__init__()
|
||||
out_dim = mdct_frame_len
|
||||
self.dconv = DilatedCausalConv1d(dim, dim, 5, 1, dim, 1)
|
||||
self.pconv1 = LoRALinear1d(dim, dim * 2, gin_channels, 2)
|
||||
self.pconv2 = LoRALinear1d(dim * 2, out_dim, gin_channels, 2)
|
||||
self.act = torch.nn.GELU()
|
||||
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
||||
|
||||
if sample_rate is not None:
|
||||
# optionally init the last layer following mel-scale
|
||||
m_max = _hz_to_mel(sample_rate // 2)
|
||||
m_pts = torch.linspace(0, m_max, out_dim)
|
||||
f_pts = _mel_to_hz(m_pts)
|
||||
scale = 1 - (f_pts / f_pts.max())
|
||||
|
||||
with torch.no_grad():
|
||||
self.pconv2.main_fc.weight.mul_(scale.view(-1, 1, 1))
|
||||
|
||||
def forward(self, x: torch.Tensor, g: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the IMDCTSymExpHead module.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
x = self.dconv(x)
|
||||
x = self.pconv1(x, g)
|
||||
x = self.act(x)
|
||||
x = self.pconv2(x, g)
|
||||
x = symexp(x)
|
||||
x = torch.clip(x, min=-1e2, max=1e2) # safeguard to prevent excessively large magnitudes
|
||||
audio = self.imdct(x)
|
||||
return audio
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dconv.remove_weight_norm()
|
||||
self.pconv1.remove_weight_norm()
|
||||
self.pconv2.remove_weight_norm()
|
||||
|
||||
def fix_speaker(self, g):
|
||||
self.pconv1.fix_speaker(g)
|
||||
self.pconv2.fix_speaker(g)
|
||||
|
||||
def unfix_speaker(self, g):
|
||||
self.pconv1.unfix_speaker(g)
|
||||
self.pconv2.unfix_speaker(g)
|
||||
|
||||
def symexp(x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
@ -3,6 +3,7 @@ from typing import Any
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda.amp import autocast
|
||||
from Exceptions import (
|
||||
DeviceCannotSupportHalfPrecisionException,
|
||||
DeviceChangingException,
|
||||
@ -118,10 +119,6 @@ class Pipeline(object):
|
||||
|
||||
# tensor型調整
|
||||
feats = audio_pad
|
||||
if self.isHalf is True:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
@ -129,19 +126,20 @@ class Pipeline(object):
|
||||
|
||||
# embedding
|
||||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||
try:
|
||||
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
|
||||
if torch.isnan(feats).all():
|
||||
raise DeviceCannotSupportHalfPrecisionException()
|
||||
except RuntimeError as e:
|
||||
if "HALF" in e.__str__().upper():
|
||||
raise HalfPrecisionChangingException()
|
||||
elif "same device" in e.__str__():
|
||||
raise DeviceChangingException()
|
||||
else:
|
||||
raise e
|
||||
if protect < 0.5 and search_index:
|
||||
feats0 = feats.clone()
|
||||
with autocast(enabled=self.isHalf):
|
||||
try:
|
||||
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
|
||||
if torch.isnan(feats).all():
|
||||
raise DeviceCannotSupportHalfPrecisionException()
|
||||
except RuntimeError as e:
|
||||
if "HALF" in e.__str__().upper():
|
||||
raise HalfPrecisionChangingException()
|
||||
elif "same device" in e.__str__():
|
||||
raise DeviceChangingException()
|
||||
else:
|
||||
raise e
|
||||
if protect < 0.5 and search_index:
|
||||
feats0 = feats.clone()
|
||||
|
||||
# Index - feature抽出
|
||||
# if self.index is not None and self.feature is not None and index_rate != 0:
|
||||
@ -167,10 +165,8 @@ class Pipeline(object):
|
||||
|
||||
# recover silient font
|
||||
npy = np.concatenate([np.zeros([npyOffset, npy.shape[1]]).astype("float32"), npy])
|
||||
if self.isHalf is True:
|
||||
npy = npy.astype("float16")
|
||||
|
||||
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats
|
||||
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
if protect < 0.5 and search_index:
|
||||
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
@ -207,14 +203,15 @@ class Pipeline(object):
|
||||
# 推論実行
|
||||
try:
|
||||
with torch.no_grad():
|
||||
audio1 = (
|
||||
torch.clip(
|
||||
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0].to(dtype=torch.float32),
|
||||
-1.0,
|
||||
1.0,
|
||||
)
|
||||
* 32767.5
|
||||
).data.to(dtype=torch.int16)
|
||||
with autocast(enabled=self.isHalf):
|
||||
audio1 = (
|
||||
torch.clip(
|
||||
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0].to(dtype=torch.float32),
|
||||
-1.0,
|
||||
1.0,
|
||||
)
|
||||
* 32767.5
|
||||
).data.to(dtype=torch.int16)
|
||||
except RuntimeError as e:
|
||||
if "HALF" in e.__str__().upper():
|
||||
print("11", e)
|
||||
|
Loading…
Reference in New Issue
Block a user