mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 13:35:12 +03:00
update
This commit is contained in:
parent
0fc7d4c873
commit
fbff691ffe
@ -20,9 +20,23 @@ from datetime import datetime
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
from mods.ssl import create_self_signed_cert
|
||||
from mods.VoiceChanger import VoiceChanger
|
||||
# from mods.Whisper import Whisper
|
||||
|
||||
|
||||
# File Uploader
|
||||
from mods.FileUploader import upload_file, concat_file_chunks
|
||||
|
||||
# Trainer Rest Internal
|
||||
from mods.Trainer_Speakers import mod_get_speakers
|
||||
from mods.Trainer_Speaker import mod_delete_speaker
|
||||
from mods.Trainer_Speaker_Voices import mod_get_speaker_voices
|
||||
from mods.Trainer_Speaker_Voice import mod_get_speaker_voice
|
||||
from mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting
|
||||
from mods.Trainer_Models import mod_get_models
|
||||
from mods.Trainer_Model import mod_get_model, mod_delete_model
|
||||
from mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log
|
||||
|
||||
class UvicornSuppressFilter(logging.Filter):
|
||||
def filter(self, record):
|
||||
@ -131,6 +145,24 @@ args = parser.parse_args()
|
||||
printMessage(f"Phase name:{__name__}", level=2)
|
||||
thisFilename = os.path.basename(__file__)[:-3]
|
||||
|
||||
from typing import Callable, List
|
||||
from fastapi import Body, FastAPI, HTTPException, Request, Response
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.routing import APIRoute
|
||||
class ValidationErrorLoggingRoute(APIRoute):
|
||||
def get_route_handler(self) -> Callable:
|
||||
original_route_handler = super().get_route_handler()
|
||||
|
||||
async def custom_route_handler(request: Request) -> Response:
|
||||
try:
|
||||
return await original_route_handler(request)
|
||||
except Exception as exc:
|
||||
print("Exception", request.url, str(exc))
|
||||
body = await request.body()
|
||||
detail = {"errors": exc.errors(), "body": body.decode()}
|
||||
raise HTTPException(status_code=422, detail=detail)
|
||||
|
||||
return custom_route_handler
|
||||
|
||||
if __name__ == thisFilename or args.colab == True:
|
||||
printMessage(f"PHASE3:{__name__}", level=2)
|
||||
@ -139,6 +171,7 @@ if __name__ == thisFilename or args.colab == True:
|
||||
MODEL = args.m
|
||||
|
||||
app_fastapi = FastAPI()
|
||||
app_fastapi.router.route_class = ValidationErrorLoggingRoute
|
||||
app_fastapi.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
@ -149,6 +182,10 @@ if __name__ == thisFilename or args.colab == True:
|
||||
|
||||
app_fastapi.mount("/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
app_fastapi.mount("/trainer", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
app_fastapi.mount("/recorder", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
||||
|
||||
sio = socketio.AsyncServer(
|
||||
async_mode='asgi',
|
||||
cors_allowed_origins='*'
|
||||
@ -178,36 +215,20 @@ if __name__ == thisFilename or args.colab == True:
|
||||
return {"result": "Index"}
|
||||
|
||||
|
||||
UPLOAD_DIR = "model_upload_dir"
|
||||
############
|
||||
# File Uploder
|
||||
# ##########
|
||||
UPLOAD_DIR = "upload_dir"
|
||||
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
||||
# Can colab receive post request "ONLY" at root path?
|
||||
@app_fastapi.post("/upload_model_file")
|
||||
async def upload_file(configFile:UploadFile = File(...), modelFile: UploadFile = File(...)):
|
||||
if configFile and modelFile:
|
||||
for file in [modelFile, configFile]:
|
||||
filename = file.filename
|
||||
fileobj = file.file
|
||||
upload_dir = open(os.path.join(UPLOAD_DIR, filename),'wb+')
|
||||
shutil.copyfileobj(fileobj, upload_dir)
|
||||
upload_dir.close()
|
||||
namespace.loadModel(os.path.join(UPLOAD_DIR, configFile.filename), os.path.join(UPLOAD_DIR, modelFile.filename))
|
||||
return {"uploaded files": f"{configFile.filename}, {modelFile.filename} "}
|
||||
return {"Error": "uploaded file is not found."}
|
||||
|
||||
MODEL_DIR = "/MMVC_Trainer/logs"
|
||||
os.makedirs(MODEL_DIR, exist_ok=True)
|
||||
|
||||
@app_fastapi.post("/upload_file")
|
||||
async def post_upload_file(
|
||||
file:UploadFile = File(...),
|
||||
filename: str = Form(...)
|
||||
):
|
||||
|
||||
if file and filename:
|
||||
fileobj = file.file
|
||||
upload_dir = open(os.path.join(UPLOAD_DIR, filename),'wb+')
|
||||
shutil.copyfileobj(fileobj, upload_dir)
|
||||
upload_dir.close()
|
||||
return {"uploaded files": f"{filename} "}
|
||||
return {"Error": "uploaded file is not found."}
|
||||
return upload_file(UPLOAD_DIR, file, filename)
|
||||
|
||||
@app_fastapi.post("/load_model")
|
||||
async def post_load_model(
|
||||
@ -216,33 +237,40 @@ if __name__ == thisFilename or args.colab == True:
|
||||
configFilename: str = Form(...)
|
||||
):
|
||||
|
||||
target_file_name = modelFilename
|
||||
with open(os.path.join(UPLOAD_DIR, target_file_name), "ab") as target_file:
|
||||
for i in range(modelFilenameChunkNum):
|
||||
filename = f"{modelFilename}_{i}"
|
||||
chunk_file_path = os.path.join(UPLOAD_DIR,filename)
|
||||
stored_chunk_file = open(chunk_file_path, 'rb')
|
||||
target_file.write(stored_chunk_file.read())
|
||||
stored_chunk_file.close()
|
||||
os.unlink(chunk_file_path)
|
||||
target_file.close()
|
||||
print(f'File saved to: {target_file_name}')
|
||||
modelFilePath = concat_file_chunks(UPLOAD_DIR, modelFilename, modelFilenameChunkNum,UPLOAD_DIR)
|
||||
print(f'File saved to: {modelFilePath}')
|
||||
configFilePath = os.path.join(UPLOAD_DIR, configFilename)
|
||||
|
||||
print(f'Load: {configFilename}, {target_file_name}')
|
||||
namespace.loadModel(os.path.join(UPLOAD_DIR, configFilename), os.path.join(UPLOAD_DIR, target_file_name))
|
||||
return {"File saved to": f"{target_file_name}"}
|
||||
namespace.loadModel(configFilePath, modelFilePath)
|
||||
return {"load": f"{modelFilePath}, {configFilePath}"}
|
||||
|
||||
@app_fastapi.post("/load_model_for_train")
|
||||
async def post_load_model_for_train(
|
||||
modelGFilename: str = Form(...),
|
||||
modelGFilenameChunkNum: int = Form(...),
|
||||
modelDFilename: str = Form(...),
|
||||
modelDFilenameChunkNum: int = Form(...),
|
||||
):
|
||||
|
||||
|
||||
modelGFilePath = concat_file_chunks(UPLOAD_DIR, modelGFilename, modelGFilenameChunkNum, MODEL_DIR)
|
||||
modelDFilePath = concat_file_chunks(UPLOAD_DIR, modelDFilename, modelDFilenameChunkNum,MODEL_DIR)
|
||||
return {"File saved": f"{modelGFilePath}, {modelDFilePath}"}
|
||||
|
||||
@app_fastapi.get("/transcribe")
|
||||
def get_transcribe():
|
||||
try:
|
||||
namespace.transcribe()
|
||||
except Exception as e:
|
||||
print("TRANSCRIBE PROCESSING!!!! EXCEPTION!!!", e)
|
||||
print(traceback.format_exc())
|
||||
return str(e)
|
||||
|
||||
@app_fastapi.post("/extract_voices")
|
||||
async def post_load_model(
|
||||
zipFilename: str = Form(...),
|
||||
zipFileChunkNum: int = Form(...),
|
||||
):
|
||||
zipFilePath = concat_file_chunks(UPLOAD_DIR, zipFilename, zipFileChunkNum, UPLOAD_DIR)
|
||||
shutil.unpack_archive(zipFilePath, "/MMVC_Trainer/dataset/textful/")
|
||||
return {"Zip file unpacked": f"{zipFilePath}"}
|
||||
|
||||
|
||||
############
|
||||
# Voice Changer
|
||||
# ##########
|
||||
@app_fastapi.post("/test")
|
||||
async def post_test(voice:VoiceModel):
|
||||
try:
|
||||
@ -284,6 +312,68 @@ if __name__ == thisFilename or args.colab == True:
|
||||
return str(e)
|
||||
|
||||
|
||||
# Trainer REST API ※ ColabがTop直下のパスにしかPOSTを投げれないようなので"REST風"
|
||||
@app_fastapi.get("/get_speakers")
|
||||
async def get_speakers():
|
||||
return mod_get_speakers()
|
||||
|
||||
@app_fastapi.delete("/delete_speaker")
|
||||
async def delete_speaker(speaker:str= Form(...)):
|
||||
return mod_delete_speaker(speaker)
|
||||
|
||||
@app_fastapi.get("/get_speaker_voices")
|
||||
async def get_speaker_voices(speaker:str):
|
||||
return mod_get_speaker_voices(speaker)
|
||||
|
||||
@app_fastapi.get("/get_speaker_voice")
|
||||
async def get_speaker_voices(speaker:str, voice:str):
|
||||
return mod_get_speaker_voice(speaker, voice)
|
||||
|
||||
|
||||
@app_fastapi.get("/get_multi_speaker_setting")
|
||||
async def get_multi_speaker_setting():
|
||||
return mod_get_multi_speaker_setting()
|
||||
|
||||
@app_fastapi.post("/post_multi_speaker_setting")
|
||||
async def post_multi_speaker_setting(setting: str = Form(...)):
|
||||
return mod_post_multi_speaker_setting(setting)
|
||||
|
||||
@app_fastapi.get("/get_models")
|
||||
async def get_models():
|
||||
return mod_get_models()
|
||||
|
||||
@app_fastapi.get("/get_model")
|
||||
async def get_model(model:str):
|
||||
return mod_get_model(model)
|
||||
|
||||
@app_fastapi.delete("/delete_model")
|
||||
async def delete_model(model:str= Form(...)):
|
||||
return mod_delete_model(model)
|
||||
|
||||
|
||||
@app_fastapi.post("/post_pre_training")
|
||||
async def post_pre_training(batch:int= Form(...)):
|
||||
return mod_post_pre_training(batch)
|
||||
|
||||
@app_fastapi.post("/post_start_training")
|
||||
async def post_start_training():
|
||||
print("POST START TRAINING..")
|
||||
return mod_post_start_training()
|
||||
|
||||
@app_fastapi.post("/post_stop_training")
|
||||
async def post_stop_training():
|
||||
print("POST STOP TRAINING..")
|
||||
return mod_post_stop_training()
|
||||
|
||||
@app_fastapi.get("/get_related_files")
|
||||
async def get_related_files():
|
||||
return mod_get_related_files()
|
||||
|
||||
@app_fastapi.get("/get_tail_training_log")
|
||||
async def get_tail_training_log(num:int):
|
||||
return mod_get_tail_training_log(num)
|
||||
|
||||
|
||||
if __name__ == '__mp_main__':
|
||||
printMessage(f"PHASE2:{__name__}", level=2)
|
||||
|
||||
|
27
demo/mods/FileUploader.py
Executable file
27
demo/mods/FileUploader.py
Executable file
@ -0,0 +1,27 @@
|
||||
import os, shutil
|
||||
from fastapi import UploadFile
|
||||
|
||||
# UPLOAD_DIR = "model_upload_dir"
|
||||
|
||||
def upload_file(upload_dirname:str, file:UploadFile, filename: str):
|
||||
if file and filename:
|
||||
fileobj = file.file
|
||||
upload_dir = open(os.path.join(upload_dirname, filename),'wb+')
|
||||
shutil.copyfileobj(fileobj, upload_dir)
|
||||
upload_dir.close()
|
||||
return {"uploaded files": f"{filename} "}
|
||||
return {"Error": "uploaded file is not found."}
|
||||
|
||||
def concat_file_chunks(upload_dirname:str, filename:str, chunkNum:int, dest_dirname:str):
|
||||
target_file_name = os.path.join(dest_dirname, filename)
|
||||
with open(target_file_name, "ab") as target_file:
|
||||
for i in range(chunkNum):
|
||||
chunkName = f"{filename}_{i}"
|
||||
chunk_file_path = os.path.join(upload_dirname, chunkName)
|
||||
stored_chunk_file = open(chunk_file_path, 'rb')
|
||||
target_file.write(stored_chunk_file.read())
|
||||
stored_chunk_file.close()
|
||||
os.unlink(chunk_file_path)
|
||||
target_file.close()
|
||||
return target_file_name
|
||||
|
13
demo/mods/Trainer_Model.py
Executable file
13
demo/mods/Trainer_Model.py
Executable file
@ -0,0 +1,13 @@
|
||||
|
||||
from fastapi.responses import FileResponse
|
||||
import os
|
||||
|
||||
def mod_get_model(modelFile:str):
|
||||
modelPath = os.path.join("/MMVC_Trainer/logs", modelFile)
|
||||
return FileResponse(path=modelPath)
|
||||
|
||||
def mod_delete_model(modelFile:str):
|
||||
modelPath = os.path.join("/MMVC_Trainer/logs", modelFile)
|
||||
os.unlink(modelPath)
|
||||
return {"Model deleted": f"{modelFile}"}
|
||||
|
21
demo/mods/Trainer_Models.py
Executable file
21
demo/mods/Trainer_Models.py
Executable file
@ -0,0 +1,21 @@
|
||||
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from trainer_mods.files import get_file_list
|
||||
import os
|
||||
|
||||
def mod_get_models():
|
||||
gModels = get_file_list(f'/MMVC_Trainer/logs/G*.pth')
|
||||
dModels = get_file_list(f'/MMVC_Trainer/logs/D*.pth')
|
||||
models = []
|
||||
models.extend(gModels)
|
||||
models.extend(dModels)
|
||||
models = [ os.path.basename(x) for x in models]
|
||||
|
||||
models = sorted(models)
|
||||
data = {
|
||||
"models":models
|
||||
}
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
|
26
demo/mods/Trainer_MultiSpeakerSetting.py
Executable file
26
demo/mods/Trainer_MultiSpeakerSetting.py
Executable file
@ -0,0 +1,26 @@
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
import os
|
||||
|
||||
MULTI_SPEAKER_SETTING_PATH = "/MMVC_Trainer/dataset/multi_speaker_correspondence.txt"
|
||||
def mod_get_multi_speaker_setting():
|
||||
data = {}
|
||||
if os.path.isfile(MULTI_SPEAKER_SETTING_PATH) == False:
|
||||
with open(MULTI_SPEAKER_SETTING_PATH, "w") as f:
|
||||
f.write("")
|
||||
f.flush()
|
||||
f.close()
|
||||
|
||||
with open(MULTI_SPEAKER_SETTING_PATH, "r") as f:
|
||||
setting = f.read()
|
||||
data["multi_speaker_setting"] = setting
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
|
||||
|
||||
def mod_post_multi_speaker_setting(setting:str):
|
||||
with open(MULTI_SPEAKER_SETTING_PATH, "w") as f:
|
||||
f.write(setting)
|
||||
f.flush()
|
||||
f.close()
|
||||
return {"Write Multispeaker setting": f"{setting}"}
|
15
demo/mods/Trainer_Speaker.py
Executable file
15
demo/mods/Trainer_Speaker.py
Executable file
@ -0,0 +1,15 @@
|
||||
import shutil
|
||||
from mods.Trainer_MultiSpeakerSetting import MULTI_SPEAKER_SETTING_PATH
|
||||
|
||||
def mod_delete_speaker(speaker:str):
|
||||
shutil.rmtree(f"/MMVC_Trainer/dataset/textful/{speaker}")
|
||||
|
||||
with open(MULTI_SPEAKER_SETTING_PATH, "r") as f:
|
||||
setting = f.readlines()
|
||||
|
||||
filtered = filter(lambda x: x.startswith(f"{speaker}|")==False, setting)
|
||||
with open(MULTI_SPEAKER_SETTING_PATH, "w") as f:
|
||||
f.writelines(list(filtered))
|
||||
f.flush()
|
||||
f.close()
|
||||
return {"Speaker deleted": f"{speaker}"}
|
28
demo/mods/Trainer_Speaker_Voice.py
Executable file
28
demo/mods/Trainer_Speaker_Voice.py
Executable file
@ -0,0 +1,28 @@
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
import os, base64
|
||||
|
||||
def mod_get_speaker_voice(speaker:str, voice:str):
|
||||
wav_file = f'/MMVC_Trainer/dataset/textful/{speaker}/wav/{voice}.wav'
|
||||
text_file = f'/MMVC_Trainer/dataset/textful/{speaker}/text/{voice}.txt'
|
||||
readable_text_file = f'/MMVC_Trainer/dataset/textful/{speaker}/readable_text/{voice}.txt'
|
||||
|
||||
data = {}
|
||||
if os.path.exists(wav_file):
|
||||
with open(wav_file, "rb") as f:
|
||||
wav_data = f.read()
|
||||
wav_data_base64 = base64.b64encode(wav_data).decode('utf-8')
|
||||
data["wav"] = wav_data_base64
|
||||
|
||||
|
||||
if os.path.exists(text_file):
|
||||
with open(text_file, "r") as f:
|
||||
text_data = f.read()
|
||||
data["text"] = text_data
|
||||
|
||||
if os.path.exists(readable_text_file):
|
||||
with open(readable_text_file, "r") as f:
|
||||
text_data = f.read()
|
||||
data["readable_text"] = text_data
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
22
demo/mods/Trainer_Speaker_Voices.py
Executable file
22
demo/mods/Trainer_Speaker_Voices.py
Executable file
@ -0,0 +1,22 @@
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from trainer_mods.files import get_file_list
|
||||
import os
|
||||
|
||||
def mod_get_speaker_voices(speaker:str):
|
||||
voices = get_file_list(f'/MMVC_Trainer/dataset/textful/{speaker}/wav/*.wav')
|
||||
|
||||
texts = get_file_list(f'/MMVC_Trainer/dataset/textful/{speaker}/text/*.txt')
|
||||
|
||||
readable_texts = get_file_list(f'/MMVC_Trainer/dataset/textful/{speaker}/readable_text/*.txt')
|
||||
|
||||
items = voices
|
||||
items.extend(texts)
|
||||
items.extend(readable_texts)
|
||||
items = [ os.path.splitext(os.path.basename(x))[0] for x in items]
|
||||
items = sorted(set(items))
|
||||
data = {
|
||||
"voices":items
|
||||
}
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
15
demo/mods/Trainer_Speakers.py
Executable file
15
demo/mods/Trainer_Speakers.py
Executable file
@ -0,0 +1,15 @@
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from trainer_mods.files import get_dir_list
|
||||
import os
|
||||
# CreateはFileUploaderで実装。
|
||||
|
||||
def mod_get_speakers():
|
||||
os.makedirs("/MMVC_Trainer/dataset/textful", exist_ok=True)
|
||||
speakers = get_dir_list("/MMVC_Trainer/dataset/textful/")
|
||||
|
||||
data = {
|
||||
"speakers":sorted(speakers)
|
||||
}
|
||||
json_compatible_item_data = jsonable_encoder(data)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
167
demo/mods/Trainer_Training.py
Executable file
167
demo/mods/Trainer_Training.py
Executable file
@ -0,0 +1,167 @@
|
||||
import subprocess,os
|
||||
from trainer_mods.files import get_file_list
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
|
||||
LOG_DIR = "/MMVC_Trainer/info"
|
||||
train_proc = None
|
||||
|
||||
SUCCESS = 0
|
||||
ERROR = -1
|
||||
### Submodule for Pre train
|
||||
def sync_exec(cmd:str, log_path:str):
|
||||
shortCmdStr = cmd[:20]
|
||||
try:
|
||||
with open(log_path, 'w') as log_file:
|
||||
proc = subprocess.run(cmd, shell=True, text=True, stdout=log_file, stderr=log_file, cwd="/MMVC_Trainer")
|
||||
print(f"{shortCmdStr} returncode:{proc.returncode}")
|
||||
if proc.returncode != 0:
|
||||
print(f"{shortCmdStr} exception:")
|
||||
return (ERROR, f"returncode:{proc.returncode}")
|
||||
except Exception as e:
|
||||
print(f"{shortCmdStr} exception:", str(e))
|
||||
return (ERROR, str(e))
|
||||
return (SUCCESS, "success")
|
||||
|
||||
def sync_exec_with_stdout(cmd:str, log_path:str):
|
||||
shortCmdStr = cmd[:20]
|
||||
try:
|
||||
with open(log_path, 'w') as log_file:
|
||||
proc = subprocess.run(cmd, shell=True, text=True, stdout=subprocess.PIPE,
|
||||
stderr=log_file, cwd="/MMVC_Trainer")
|
||||
print(f"STDOUT{shortCmdStr}",proc.stdout)
|
||||
except Exception as e:
|
||||
print(f"{shortCmdStr} exception:", str(e))
|
||||
return (ERROR, str(e))
|
||||
return (SUCCESS, proc.stdout)
|
||||
|
||||
|
||||
def create_dataset():
|
||||
cmd = "python3 create_dataset_jtalk.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt"
|
||||
log_file = os.path.join(LOG_DIR, "log_create_dataset_jtalk.txt")
|
||||
res = sync_exec(cmd, log_file)
|
||||
return res
|
||||
|
||||
def set_batch_size(batch:int):
|
||||
cmd = "sed -i 's/\"batch_size\": [0-9]*/\"batch_size\": " + str(batch) + "/' /MMVC_Trainer/configs/baseconfig.json"
|
||||
log_file = os.path.join(LOG_DIR, "log_set_batch_size.txt")
|
||||
res = sync_exec(cmd, log_file)
|
||||
return res
|
||||
|
||||
def set_dummy_device_count():
|
||||
cmd = 'sed -ie "s/torch.cuda.device_count()/1/" /MMVC_Trainer/train_ms.py'
|
||||
log_file = os.path.join(LOG_DIR, "log_set_dummy_device_count.txt")
|
||||
res = sync_exec(cmd, log_file)
|
||||
return res
|
||||
|
||||
### Submodule for Train
|
||||
def exec_training():
|
||||
global train_proc
|
||||
log_file = os.path.join(LOG_DIR, "training.txt")
|
||||
|
||||
# トレーニング開始確認(二重起動回避)
|
||||
if train_proc != None:
|
||||
status = train_proc.poll()
|
||||
if status != None:
|
||||
print("Training have ended.", status)
|
||||
train_proc = None
|
||||
else:
|
||||
print("Training have stated.")
|
||||
return (ERROR, "Training have started")
|
||||
|
||||
try:
|
||||
with open(log_file, 'w') as log_file:
|
||||
cmd = 'python3 train_ms.py -c configs/train_config.json -m ./'
|
||||
print("exec:",cmd)
|
||||
train_proc = subprocess.Popen("exec "+cmd, shell=True, text=True, stdout=log_file, stderr=log_file, cwd="/MMVC_Trainer")
|
||||
print("Training stated")
|
||||
print(f"returncode:{train_proc.returncode}")
|
||||
except Exception as e:
|
||||
print("start training exception:", str(e))
|
||||
return (ERROR, str(e))
|
||||
|
||||
return (SUCCESS, "success")
|
||||
|
||||
def stop_training():
|
||||
global train_proc
|
||||
if train_proc == None:
|
||||
print("Training have not stated.")
|
||||
return (ERROR, "Training have not stated.")
|
||||
|
||||
status = train_proc.poll()
|
||||
if status != None:
|
||||
print("Training have already ended.", status)
|
||||
train_proc = None
|
||||
return (ERROR, "Training have already ended. " + status)
|
||||
else:
|
||||
train_proc.kill()
|
||||
print("Training have stoped.")
|
||||
return (SUCCESS, "success")
|
||||
|
||||
### Main
|
||||
def mod_post_pre_training(batch:int):
|
||||
res = set_batch_size(batch)
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Preprocess(set_batch_size) failed. {res[1]}"}
|
||||
|
||||
res = set_dummy_device_count()
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Preprocess(set_dummy_device_count) failed. {res[1]}"}
|
||||
|
||||
res = create_dataset()
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Preprocess failed(create_dataset). {res[1]}"}
|
||||
|
||||
return {"result":"success", "detail": f"Preprocess succeeded. {res[1]}"}
|
||||
|
||||
|
||||
def mod_post_start_training():
|
||||
res = exec_training()
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Start training failed. {res[1]}"}
|
||||
|
||||
return {"result":"success", "detail": f"Start training succeeded. {res[1]}"}
|
||||
|
||||
def mod_post_stop_training():
|
||||
res = stop_training()
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Stop training failed. {res[1]}"}
|
||||
|
||||
return {"result":"success", "detail": f"Stop training succeeded. {res[1]}"}
|
||||
|
||||
### DEBUG
|
||||
def mod_get_related_files():
|
||||
files = get_file_list(os.path.join(LOG_DIR,"*"))
|
||||
files.extend([
|
||||
"/MMVC_Trainer/dataset/multi_speaker_correspondence.txt",
|
||||
"/MMVC_Trainer/train_ms.py",
|
||||
])
|
||||
files.extend(
|
||||
get_file_list("/MMVC_Trainer/configs/*")
|
||||
)
|
||||
|
||||
res = []
|
||||
for f in files:
|
||||
size = os.path.getsize(f)
|
||||
data = ""
|
||||
if size < 1024*1024:
|
||||
with open(f, "r") as input:
|
||||
data = input.read()
|
||||
|
||||
res.append({
|
||||
"name":f,
|
||||
"size":size,
|
||||
"data":data
|
||||
})
|
||||
|
||||
json_compatible_item_data = jsonable_encoder(res)
|
||||
return JSONResponse(content=json_compatible_item_data)
|
||||
|
||||
def mod_get_tail_training_log(num:int):
|
||||
training_log_file = os.path.join(LOG_DIR, "training.txt")
|
||||
res = sync_exec(f"cat {training_log_file} | sed -e 's/.*\r//' > /tmp/out","/dev/null")
|
||||
cmd = f'tail -n {num} /tmp/out'
|
||||
res = sync_exec_with_stdout(cmd, "/dev/null")
|
||||
if res[0] == ERROR:
|
||||
return {"result":"failed", "detail": f"Tail training log failed. {res[1]}"}
|
||||
return {"result":"success", "detail":res[1]}
|
19
demo/trainer_mods/files.py
Executable file
19
demo/trainer_mods/files.py
Executable file
@ -0,0 +1,19 @@
|
||||
import os,glob
|
||||
|
||||
|
||||
def get_file_list(top_dir):
|
||||
for root, dirs, files in os.walk(top_dir):
|
||||
for dir in dirs:
|
||||
dirPath = os.path.join(root, dir)
|
||||
print(f'dirPath = {dirPath}')
|
||||
|
||||
for file in files:
|
||||
filePath = os.path.join(root, file)
|
||||
print(f'filePath = {filePath}')
|
||||
|
||||
|
||||
def get_dir_list(top_dir):
|
||||
return os.listdir(top_dir)
|
||||
|
||||
def get_file_list(top_dir):
|
||||
return glob.glob(top_dir)
|
4
frontend/dist/assets/setting_recorder.json
vendored
Executable file
4
frontend/dist/assets/setting_recorder.json
vendored
Executable file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"app_title": "recorder",
|
||||
"majar_mode": "docker"
|
||||
}
|
4
frontend/dist/assets/setting_trainer.json
vendored
Executable file
4
frontend/dist/assets/setting_trainer.json
vendored
Executable file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"app_title": "trainer",
|
||||
"majar_mode": "docker"
|
||||
}
|
2
frontend/dist/index.html
vendored
2
frontend/dist/index.html
vendored
@ -1 +1 @@
|
||||
<!doctype html><html lang="ja" style="width:100%;height:100%;overflow:hidden"><head><meta charset="utf-8"/><title>voice recorder</title><script defer="defer" src="index.js"></script></head><body style="width:100%;height:100%;margin:0"><div id="app" style="width:100%;height:100%"></div><noscript><strong>javascriptを有効にしてください</strong></noscript></body></html>
|
||||
<!doctype html><html lang="ja" style="width:100%;height:100%;overflow:hidden"><head><meta charset="utf-8"/><title>Realtime Voice Changer (Train/VC)</title><script defer="defer" src="index.js"></script></head><body style="width:100%;height:100%;margin:0"><div id="app" style="width:100%;height:100%"></div><noscript><strong>javascriptを有効にしてください</strong></noscript></body></html>
|
2
frontend/dist/index.js
vendored
2
frontend/dist/index.js
vendored
File diff suppressed because one or more lines are too long
21
start2.sh
21
start2.sh
@ -1,20 +1,21 @@
|
||||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
DOCKER_IMAGE=dannadori/voice-changer:20221104_062009
|
||||
#DOCKER_IMAGE=voice-changer
|
||||
|
||||
#DOCKER_IMAGE=dannadori/voice-changer:20221108_105937
|
||||
DOCKER_IMAGE=voice-changer
|
||||
|
||||
MODE=$1
|
||||
PARAMS=${@:2:($#-1)}
|
||||
|
||||
### DEFAULT VAR ###
|
||||
DEFAULT_EX_PORT=18888
|
||||
DEFAULT_EX_TB_PORT=16006
|
||||
DEFAULT_USE_GPU=on # on|off
|
||||
# DEFAULT_VERBOSE=off # on|off
|
||||
|
||||
### ENV VAR ###
|
||||
EX_PORT=${EX_PORT:-${DEFAULT_EX_PORT}}
|
||||
EX_TB_PORT=${EX_TB_PORT:-${DEFAULT_EX_TB_PORT}}
|
||||
USE_GPU=${USE_GPU:-${DEFAULT_USE_GPU}}
|
||||
# VERBOSE=${VERBOSE:-${DEFAULT_VERBOSE}}
|
||||
|
||||
@ -30,16 +31,16 @@ if [ "${MODE}" = "MMVC_TRAIN" ]; then
|
||||
echo "トレーニングを開始します"
|
||||
|
||||
docker run -it --gpus all --shm-size=128M \
|
||||
-v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||
-v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||
-v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||
-v `pwd`/vc_resources:/resources \
|
||||
-v `pwd`/work_dir/logs:/MMVC_Trainer/logs \
|
||||
-v `pwd`/work_dir/dataset:/MMVC_Trainer/dataset \
|
||||
-v `pwd`/work_dir/info:/MMVC_Trainer/info \
|
||||
-e LOCAL_UID=$(id -u $USER) \
|
||||
-e LOCAL_GID=$(id -g $USER) \
|
||||
-e EX_PORT=${EX_PORT} -e EX_TB_PORT=${EX_TB_PORT} \
|
||||
-e EX_IP="`hostname -I`" \
|
||||
-e EX_PORT=${EX_PORT} \
|
||||
-e VERBOSE=${VERBOSE} \
|
||||
-p ${EX_PORT}:6006 $DOCKER_IMAGE "$@"
|
||||
-p ${EX_PORT}:8080 -p ${EX_TB_PORT}:6006 \
|
||||
$DOCKER_IMAGE "$@"
|
||||
|
||||
|
||||
elif [ "${MODE}" = "MMVC" ]; then
|
||||
if [ "${USE_GPU}" = "on" ]; then
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM dannadori/voice-changer-internal:20221104_061809 as front
|
||||
FROM dannadori/voice-changer-internal:20221108_184110 as front
|
||||
FROM debian:bullseye-slim as base
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -60,7 +60,6 @@ COPY --from=base --chmod=777 /usr/local/lib/python3.9/dist-packages /usr/local/l
|
||||
COPY --from=front --chmod=777 /MMVC_Trainer /MMVC_Trainer
|
||||
RUN chmod 0777 /MMVC_Trainer
|
||||
|
||||
WORKDIR /MMVC_Trainer
|
||||
ADD /setup.sh /MMVC_Trainer/
|
||||
ADD /exec.sh /MMVC_Trainer/
|
||||
|
||||
@ -69,6 +68,10 @@ COPY --from=front --chmod=777 /voice-changer-internal/frontend/dist /voice-chang
|
||||
COPY --from=front --chmod=777 /voice-changer-internal/voice-change-service /voice-changer-internal/voice-change-service
|
||||
RUN chmod 0777 /voice-changer-internal/voice-change-service
|
||||
|
||||
|
||||
## 歴史的な経緯でsetup.shをMMVC_Trainerに置いているのでそこを起動時のWORKDIRにしている。
|
||||
WORKDIR /MMVC_Trainer
|
||||
|
||||
# ##### Soft VC
|
||||
# COPY --from=front /hubert /hubert
|
||||
# COPY --from=front /acoustic-model /acoustic-model
|
||||
|
@ -39,16 +39,17 @@ if [ "${MODE}" = "MMVC" ] ; then
|
||||
# python3 MMVCServerSIO.py $PARAMS 2>stderr.txt
|
||||
# fi
|
||||
echo "MMVCを起動します"
|
||||
python3 MMVCServerSIO.py $PARAMS 2>stderr.txt
|
||||
python3 MMVCServerSIO.py $PARAMS #2>stderr.txt
|
||||
|
||||
elif [ "${MODE}" = "MMVC_TRAIN" ] ; then
|
||||
python3 create_dataset_jtalk.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt
|
||||
# date_tag=`date +%Y%m%d%H%M%S`
|
||||
sed -ie 's/80000/8000/' train_ms.py
|
||||
sed -ie "s/\"batch_size\": 10/\"batch_size\": $batch_size/" configs/train_config.json
|
||||
sed -ie "s/torch.cuda.device_count()/1/" train_ms.py
|
||||
python3 -m tensorboard.main --logdir logs --port 6006 --host 0.0.0.0 &
|
||||
python3 train_ms.py $PARAMS
|
||||
cd /voice-changer-internal/voice-change-service
|
||||
# python3 create_dataset_jtalk.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt
|
||||
# # date_tag=`date +%Y%m%d%H%M%S`
|
||||
# sed -ie 's/80000/8000/' train_ms.py
|
||||
# sed -ie "s/\"batch_size\": 10/\"batch_size\": $batch_size/" configs/train_config.json
|
||||
# sed -ie "s/torch.cuda.device_count()/1/" train_ms.py
|
||||
python3 -m tensorboard.main --logdir /MMVC_Trainer/logs --port 6006 --host 0.0.0.0 &
|
||||
python3 MMVCServerSIO.py $PARAMS
|
||||
# if ${resume_flag}; then
|
||||
# echo "トレーニング再開。バッチサイズ: ${batch_size}。"
|
||||
# python3 train_ms.py -c configs/train_config.json -m vc
|
||||
|
@ -3,11 +3,12 @@
|
||||
# 参考:https://programwiz.org/2022/03/22/how-to-write-shell-script-for-option-parsing/
|
||||
|
||||
set -eu
|
||||
|
||||
echo "1"
|
||||
# 実行ユーザ作成
|
||||
USER_ID=${LOCAL_UID:-9001}
|
||||
GROUP_ID=${LOCAL_GID:-9001}
|
||||
|
||||
echo "2"
|
||||
echo "exec with [UID : $USER_ID, GID: $GROUP_ID]"
|
||||
useradd -u $USER_ID -o -m user
|
||||
groupmod -g $GROUP_ID user
|
||||
|
Loading…
Reference in New Issue
Block a user