mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
include rvc model
This commit is contained in:
parent
f429e00010
commit
fcf5488b01
@ -144,7 +144,7 @@ def _downloadSamples(samples: list[ModelSamples], sampleModelIds: list[Tuple[str
|
|||||||
slotInfo.name = sample.name
|
slotInfo.name = sample.name
|
||||||
slotInfo.termsOfUseUrl = sample.termsOfUseUrl
|
slotInfo.termsOfUseUrl = sample.termsOfUseUrl
|
||||||
slotInfo.defaultTune = 0
|
slotInfo.defaultTune = 0
|
||||||
slotInfo.defaultIndexRatio = 1
|
slotInfo.defaultIndexRatio = 0
|
||||||
slotInfo.defaultProtect = 0.5
|
slotInfo.defaultProtect = 0.5
|
||||||
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
||||||
modelSlotManager.save_model_slot(targetSlotIndex, slotInfo)
|
modelSlotManager.save_model_slot(targetSlotIndex, slotInfo)
|
||||||
|
@ -210,40 +210,6 @@ class RVC(VoiceChangerModel):
|
|||||||
"filename": output_file_simple,
|
"filename": output_file_simple,
|
||||||
}
|
}
|
||||||
|
|
||||||
def merge_models(self, request: str):
|
|
||||||
print("[Voice Changer] MergeRequest:", request)
|
|
||||||
# req: MergeModelRequest = MergeModelRequest.from_json(request)
|
|
||||||
# merged = merge_model(req)
|
|
||||||
# targetSlot = 0
|
|
||||||
# if req.slot < 0:
|
|
||||||
# # 最後尾のスロット番号を格納先とする。
|
|
||||||
# allModelSlots = self.modelSlotManager.getAllSlotInfo()
|
|
||||||
# targetSlot = len(allModelSlots) - 1
|
|
||||||
# else:
|
|
||||||
# targetSlot = req.slot
|
|
||||||
|
|
||||||
# # いったんは、アップロードフォルダに格納する。(歴史的経緯)
|
|
||||||
# # 後続のloadmodelを呼び出すことで永続化モデルフォルダに移動させられる。
|
|
||||||
# storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
|
|
||||||
# print("[Voice Changer] store merged model to:", storeDir)
|
|
||||||
# os.makedirs(storeDir, exist_ok=True)
|
|
||||||
# storeFile = os.path.join(storeDir, "merged.pth")
|
|
||||||
# torch.save(merged, storeFile)
|
|
||||||
|
|
||||||
# # loadmodelを呼び出して永続化モデルフォルダに移動させる。
|
|
||||||
# params = {
|
|
||||||
# "defaultTune": req.defaultTune,
|
|
||||||
# "defaultIndexRatio": req.defaultIndexRatio,
|
|
||||||
# "defaultProtect": req.defaultProtect,
|
|
||||||
# "sampleId": "",
|
|
||||||
# "files": {"rvcModel": storeFile},
|
|
||||||
# }
|
|
||||||
# props: LoadModelParams = LoadModelParams(slot=targetSlot, isHalf=True, params=params)
|
|
||||||
# self.loadModel(props)
|
|
||||||
# self.prepareModel(targetSlot)
|
|
||||||
# self.settings.modelSlotIndex = targetSlot
|
|
||||||
# self.currentSlot = self.settings.modelSlotIndex
|
|
||||||
|
|
||||||
def get_model_current(self):
|
def get_model_current(self):
|
||||||
return [
|
return [
|
||||||
{
|
{
|
||||||
|
@ -20,17 +20,3 @@ class RVCModelMerger(ModelMerger):
|
|||||||
storeFile = os.path.join(storeDir, "merged.pth")
|
storeFile = os.path.join(storeDir, "merged.pth")
|
||||||
torch.save(merged, storeFile)
|
torch.save(merged, storeFile)
|
||||||
return storeFile
|
return storeFile
|
||||||
|
|
||||||
# # loadmodelを呼び出して永続化モデルフォルダに移動させる。
|
|
||||||
# params = {
|
|
||||||
# "defaultTune": req.defaultTune,
|
|
||||||
# "defaultIndexRatio": req.defaultIndexRatio,
|
|
||||||
# "defaultProtect": req.defaultProtect,
|
|
||||||
# "sampleId": "",
|
|
||||||
# "files": {"rvcModel": storeFile},
|
|
||||||
# }
|
|
||||||
# props: LoadModelParams = LoadModelParams(slot=targetSlot, isHalf=True, params=params)
|
|
||||||
# self.loadModel(props)
|
|
||||||
# self.prepareModel(targetSlot)
|
|
||||||
# self.settings.modelSlotIndex = targetSlot
|
|
||||||
# self.currentSlot = self.settings.modelSlotIndex
|
|
||||||
|
@ -3,9 +3,7 @@ from const import EnumInferenceTypes
|
|||||||
|
|
||||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
from infer_pack.models import ( # type:ignore
|
from .rvc_models.infer_pack.models import SynthesizerTrnMs256NSFsid
|
||||||
SynthesizerTrnMs256NSFsid,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RVCInferencer(Inferencer):
|
class RVCInferencer(Inferencer):
|
||||||
|
@ -3,9 +3,7 @@ from const import EnumInferenceTypes
|
|||||||
|
|
||||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
from infer_pack.models import ( # type:ignore
|
from .rvc_models.infer_pack.models import SynthesizerTrnMs256NSFsid_nono
|
||||||
SynthesizerTrnMs256NSFsid_nono,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RVCInferencerNono(Inferencer):
|
class RVCInferencerNono(Inferencer):
|
||||||
|
@ -2,9 +2,7 @@ import torch
|
|||||||
from const import EnumInferenceTypes
|
from const import EnumInferenceTypes
|
||||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
from infer_pack.models import ( # type:ignore
|
from .rvc_models.infer_pack.models import SynthesizerTrnMs768NSFsid
|
||||||
SynthesizerTrnMs768NSFsid,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RVCInferencerv2(Inferencer):
|
class RVCInferencerv2(Inferencer):
|
||||||
|
@ -3,9 +3,7 @@ from const import EnumInferenceTypes
|
|||||||
|
|
||||||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||||||
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
||||||
from infer_pack.models import ( # type:ignore
|
from .rvc_models.infer_pack.models import SynthesizerTrnMs768NSFsid_nono
|
||||||
SynthesizerTrnMs768NSFsid_nono,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RVCInferencerv2Nono(Inferencer):
|
class RVCInferencerv2Nono(Inferencer):
|
||||||
|
@ -2,13 +2,11 @@ import math
|
|||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
from infer_pack.models import ( # type:ignore
|
from .rvc_models.infer_pack.models import GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock, Generator
|
||||||
GeneratorNSF,
|
|
||||||
PosteriorEncoder,
|
# from infer_pack import commons, attentions
|
||||||
ResidualCouplingBlock,
|
from .rvc_models.infer_pack.commons import sequence_mask, rand_slice_segments, slice_segments2
|
||||||
Generator,
|
from .rvc_models.infer_pack.attentions import Encoder
|
||||||
)
|
|
||||||
from infer_pack import commons, attentions # type:ignore
|
|
||||||
|
|
||||||
|
|
||||||
class TextEncoder(nn.Module):
|
class TextEncoder(nn.Module):
|
||||||
@ -37,9 +35,7 @@ class TextEncoder(nn.Module):
|
|||||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||||
if f0 is True:
|
if f0 is True:
|
||||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||||
self.encoder = attentions.Encoder(
|
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
|
||||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
|
||||||
)
|
|
||||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
def forward(self, phone, pitch, lengths):
|
def forward(self, phone, pitch, lengths):
|
||||||
@ -50,9 +46,7 @@ class TextEncoder(nn.Module):
|
|||||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||||
x = self.lrelu(x)
|
x = self.lrelu(x)
|
||||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||||
x.dtype
|
|
||||||
)
|
|
||||||
x = self.encoder(x * x_mask, x_mask)
|
x = self.encoder(x * x_mask, x_mask)
|
||||||
stats = self.proj(x) * x_mask
|
stats = self.proj(x) * x_mask
|
||||||
|
|
||||||
@ -61,29 +55,7 @@ class TextEncoder(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsid(nn.Module):
|
class SynthesizerTrnMsNSFsid(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -135,9 +107,7 @@ class SynthesizerTrnMsNSFsid(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
@ -146,19 +116,15 @@ class SynthesizerTrnMsNSFsid(nn.Module):
|
|||||||
self.flow.remove_weight_norm()
|
self.flow.remove_weight_norm()
|
||||||
self.enc_q.remove_weight_norm()
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
def forward(
|
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
|
||||||
): # 这里ds是id,[bs,1]
|
|
||||||
# print(1,pitch.shape)#[bs,t]
|
# print(1,pitch.shape)#[bs,t]
|
||||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
z_p = self.flow(z, y_mask, g=g)
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
z_slice, ids_slice = commons.rand_slice_segments(
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
z, y_lengths, self.segment_size
|
|
||||||
)
|
|
||||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
pitchf = slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||||
# print(-2,pitchf.shape,z_slice.shape)
|
# print(-2,pitchf.shape,z_slice.shape)
|
||||||
o = self.dec(z_slice, pitchf, g=g)
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
@ -173,29 +139,7 @@ class SynthesizerTrnMsNSFsid(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsidNono(nn.Module):
|
class SynthesizerTrnMsNSFsidNono(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr=None, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr=None,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -246,9 +190,7 @@ class SynthesizerTrnMsNSFsidNono(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
@ -262,9 +204,7 @@ class SynthesizerTrnMsNSFsidNono(nn.Module):
|
|||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
z_p = self.flow(z, y_mask, g=g)
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
z_slice, ids_slice = commons.rand_slice_segments(
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
z, y_lengths, self.segment_size
|
|
||||||
)
|
|
||||||
o = self.dec(z_slice, g=g)
|
o = self.dec(z_slice, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
@ -0,0 +1,355 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from .commons import subsequent_mask, convert_pad_shape
|
||||||
|
from .modules import LayerNorm
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, window_size=10, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.window_size = window_size
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_1 = nn.ModuleList()
|
||||||
|
self.ffn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_2 = nn.ModuleList()
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
self.attn_layers.append(
|
||||||
|
MultiHeadAttention(
|
||||||
|
hidden_channels,
|
||||||
|
hidden_channels,
|
||||||
|
n_heads,
|
||||||
|
p_dropout=p_dropout,
|
||||||
|
window_size=window_size,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||||
|
self.ffn_layers.append(
|
||||||
|
FFN(
|
||||||
|
hidden_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout=p_dropout,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||||
|
x = x * x_mask
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.attn_layers[i](x, x, attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_1[i](x + y)
|
||||||
|
|
||||||
|
y = self.ffn_layers[i](x, x_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_2[i](x + y)
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, proximal_bias=False, proximal_init=True, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.proximal_bias = proximal_bias
|
||||||
|
self.proximal_init = proximal_init
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.self_attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_0 = nn.ModuleList()
|
||||||
|
self.encdec_attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_1 = nn.ModuleList()
|
||||||
|
self.ffn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_2 = nn.ModuleList()
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
self.self_attn_layers.append(
|
||||||
|
MultiHeadAttention(
|
||||||
|
hidden_channels,
|
||||||
|
hidden_channels,
|
||||||
|
n_heads,
|
||||||
|
p_dropout=p_dropout,
|
||||||
|
proximal_bias=proximal_bias,
|
||||||
|
proximal_init=proximal_init,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||||
|
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
||||||
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||||
|
self.ffn_layers.append(
|
||||||
|
FFN(
|
||||||
|
hidden_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout=p_dropout,
|
||||||
|
causal=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, h, h_mask):
|
||||||
|
"""
|
||||||
|
x: decoder input
|
||||||
|
h: encoder output
|
||||||
|
"""
|
||||||
|
self_attn_mask = subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||||
|
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||||
|
x = x * x_mask
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_0[i](x + y)
|
||||||
|
|
||||||
|
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_1[i](x + y)
|
||||||
|
|
||||||
|
y = self.ffn_layers[i](x, x_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_2[i](x + y)
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MultiHeadAttention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channels,
|
||||||
|
out_channels,
|
||||||
|
n_heads,
|
||||||
|
p_dropout=0.0,
|
||||||
|
window_size=None,
|
||||||
|
heads_share=True,
|
||||||
|
block_length=None,
|
||||||
|
proximal_bias=False,
|
||||||
|
proximal_init=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
assert channels % n_heads == 0
|
||||||
|
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.window_size = window_size
|
||||||
|
self.heads_share = heads_share
|
||||||
|
self.block_length = block_length
|
||||||
|
self.proximal_bias = proximal_bias
|
||||||
|
self.proximal_init = proximal_init
|
||||||
|
self.attn = None
|
||||||
|
|
||||||
|
self.k_channels = channels // n_heads
|
||||||
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
if window_size is not None:
|
||||||
|
n_heads_rel = 1 if heads_share else n_heads
|
||||||
|
rel_stddev = self.k_channels**-0.5
|
||||||
|
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||||
|
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||||
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||||
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||||
|
if proximal_init:
|
||||||
|
with torch.no_grad():
|
||||||
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||||
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||||
|
|
||||||
|
def forward(self, x, c, attn_mask=None):
|
||||||
|
q = self.conv_q(x)
|
||||||
|
k = self.conv_k(c)
|
||||||
|
v = self.conv_v(c)
|
||||||
|
|
||||||
|
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||||
|
|
||||||
|
x = self.conv_o(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def attention(self, query, key, value, mask=None):
|
||||||
|
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||||
|
b, d, t_s, t_t = (*key.size(), query.size(2)) # type: ignore
|
||||||
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||||
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||||
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||||
|
|
||||||
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||||
|
if self.window_size is not None:
|
||||||
|
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||||
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||||
|
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
||||||
|
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||||
|
scores = scores + scores_local
|
||||||
|
if self.proximal_bias:
|
||||||
|
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||||
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||||
|
if mask is not None:
|
||||||
|
scores = scores.masked_fill(mask == 0, -1e4)
|
||||||
|
if self.block_length is not None:
|
||||||
|
assert t_s == t_t, "Local attention is only available for self-attention."
|
||||||
|
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
||||||
|
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||||
|
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||||
|
p_attn = self.drop(p_attn)
|
||||||
|
output = torch.matmul(p_attn, value)
|
||||||
|
if self.window_size is not None:
|
||||||
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||||
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||||
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||||
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||||
|
return output, p_attn
|
||||||
|
|
||||||
|
def _matmul_with_relative_values(self, x, y):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, m]
|
||||||
|
y: [h or 1, m, d]
|
||||||
|
ret: [b, h, l, d]
|
||||||
|
"""
|
||||||
|
ret = torch.matmul(x, y.unsqueeze(0))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _matmul_with_relative_keys(self, x, y):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, d]
|
||||||
|
y: [h or 1, m, d]
|
||||||
|
ret: [b, h, l, m]
|
||||||
|
"""
|
||||||
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||||
|
max_relative_position = 2 * self.window_size + 1 # NOQA
|
||||||
|
# Pad first before slice to avoid using cond ops.
|
||||||
|
pad_length = max(length - (self.window_size + 1), 0)
|
||||||
|
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||||
|
slice_end_position = slice_start_position + 2 * length - 1
|
||||||
|
if pad_length > 0:
|
||||||
|
padded_relative_embeddings = F.pad(
|
||||||
|
relative_embeddings,
|
||||||
|
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
padded_relative_embeddings = relative_embeddings
|
||||||
|
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
||||||
|
return used_relative_embeddings
|
||||||
|
|
||||||
|
def _relative_position_to_absolute_position(self, x):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, 2*l-1]
|
||||||
|
ret: [b, h, l, l]
|
||||||
|
"""
|
||||||
|
batch, heads, length, _ = x.size()
|
||||||
|
# Concat columns of pad to shift from relative to absolute indexing.
|
||||||
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||||
|
|
||||||
|
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||||
|
x_flat = x.view([batch, heads, length * 2 * length])
|
||||||
|
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
|
||||||
|
|
||||||
|
# Reshape and slice out the padded elements.
|
||||||
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
|
||||||
|
return x_final
|
||||||
|
|
||||||
|
def _absolute_position_to_relative_position(self, x):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, l]
|
||||||
|
ret: [b, h, l, 2*l-1]
|
||||||
|
"""
|
||||||
|
batch, heads, length, _ = x.size()
|
||||||
|
# padd along column
|
||||||
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
|
||||||
|
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||||
|
# add 0's in the beginning that will skew the elements after reshape
|
||||||
|
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||||
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||||
|
return x_final
|
||||||
|
|
||||||
|
def _attention_bias_proximal(self, length):
|
||||||
|
"""Bias for self-attention to encourage attention to close positions.
|
||||||
|
Args:
|
||||||
|
length: an integer scalar.
|
||||||
|
Returns:
|
||||||
|
a Tensor with shape [1, 1, length, length]
|
||||||
|
"""
|
||||||
|
r = torch.arange(length, dtype=torch.float32)
|
||||||
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||||
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||||
|
|
||||||
|
|
||||||
|
class FFN(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
filter_channels,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout=0.0,
|
||||||
|
activation=None,
|
||||||
|
causal=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.activation = activation
|
||||||
|
self.causal = causal
|
||||||
|
|
||||||
|
if causal:
|
||||||
|
self.padding = self._causal_padding
|
||||||
|
else:
|
||||||
|
self.padding = self._same_padding
|
||||||
|
|
||||||
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||||
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x = self.conv_1(self.padding(x * x_mask))
|
||||||
|
if self.activation == "gelu":
|
||||||
|
x = x * torch.sigmoid(1.702 * x)
|
||||||
|
else:
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(self.padding(x * x_mask))
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
def _causal_padding(self, x):
|
||||||
|
if self.kernel_size == 1:
|
||||||
|
return x
|
||||||
|
pad_l = self.kernel_size - 1
|
||||||
|
pad_r = 0
|
||||||
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||||
|
x = F.pad(x, convert_pad_shape(padding))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _same_padding(self, x):
|
||||||
|
if self.kernel_size == 1:
|
||||||
|
return x
|
||||||
|
pad_l = (self.kernel_size - 1) // 2
|
||||||
|
pad_r = self.kernel_size // 2
|
||||||
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||||
|
x = F.pad(x, convert_pad_shape(padding))
|
||||||
|
return x
|
@ -0,0 +1,151 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
|
||||||
|
def init_weights(m, mean=0.0, std=0.01):
|
||||||
|
classname = m.__class__.__name__
|
||||||
|
if classname.find("Conv") != -1:
|
||||||
|
m.weight.data.normal_(mean, std)
|
||||||
|
|
||||||
|
|
||||||
|
def get_padding(kernel_size, dilation=1):
|
||||||
|
return int((kernel_size * dilation - dilation) / 2)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_pad_shape(pad_shape):
|
||||||
|
l = pad_shape[::-1]
|
||||||
|
pad_shape = [item for sublist in l for item in sublist]
|
||||||
|
return pad_shape
|
||||||
|
|
||||||
|
|
||||||
|
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||||
|
"""KL(P||Q)"""
|
||||||
|
kl = (logs_q - logs_p) - 0.5
|
||||||
|
kl += 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||||
|
return kl
|
||||||
|
|
||||||
|
|
||||||
|
def rand_gumbel(shape):
|
||||||
|
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||||
|
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||||
|
return -torch.log(-torch.log(uniform_samples))
|
||||||
|
|
||||||
|
|
||||||
|
def rand_gumbel_like(x):
|
||||||
|
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||||
|
return g
|
||||||
|
|
||||||
|
|
||||||
|
def slice_segments(x, ids_str, segment_size=4):
|
||||||
|
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||||
|
for i in range(x.size(0)):
|
||||||
|
idx_str = ids_str[i]
|
||||||
|
idx_end = idx_str + segment_size
|
||||||
|
ret[i] = x[i, :, idx_str:idx_end]
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def slice_segments2(x, ids_str, segment_size=4):
|
||||||
|
ret = torch.zeros_like(x[:, :segment_size])
|
||||||
|
for i in range(x.size(0)):
|
||||||
|
idx_str = ids_str[i]
|
||||||
|
idx_end = idx_str + segment_size
|
||||||
|
ret[i] = x[i, idx_str:idx_end]
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||||
|
b, d, t = x.size()
|
||||||
|
if x_lengths is None:
|
||||||
|
x_lengths = t
|
||||||
|
ids_str_max = x_lengths - segment_size + 1
|
||||||
|
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||||
|
ret = slice_segments(x, ids_str, segment_size)
|
||||||
|
return ret, ids_str
|
||||||
|
|
||||||
|
|
||||||
|
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||||
|
position = torch.arange(length, dtype=torch.float)
|
||||||
|
num_timescales = channels // 2
|
||||||
|
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1)
|
||||||
|
inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
||||||
|
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||||
|
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||||
|
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||||
|
signal = signal.view(1, channels, length)
|
||||||
|
return signal
|
||||||
|
|
||||||
|
|
||||||
|
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||||
|
b, channels, length = x.size()
|
||||||
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||||
|
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||||
|
|
||||||
|
|
||||||
|
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||||
|
b, channels, length = x.size()
|
||||||
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||||
|
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||||
|
|
||||||
|
|
||||||
|
def subsequent_mask(length):
|
||||||
|
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.script
|
||||||
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||||
|
n_channels_int = n_channels[0]
|
||||||
|
in_act = input_a + input_b
|
||||||
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||||
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||||
|
acts = t_act * s_act
|
||||||
|
return acts
|
||||||
|
|
||||||
|
|
||||||
|
def shift_1d(x):
|
||||||
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def sequence_mask(length, max_length=None):
|
||||||
|
if max_length is None:
|
||||||
|
max_length = length.max()
|
||||||
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||||
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_path(duration, mask):
|
||||||
|
"""
|
||||||
|
duration: [b, 1, t_x]
|
||||||
|
mask: [b, 1, t_y, t_x]
|
||||||
|
"""
|
||||||
|
|
||||||
|
b, _, t_y, t_x = mask.shape
|
||||||
|
cum_duration = torch.cumsum(duration, -1)
|
||||||
|
|
||||||
|
cum_duration_flat = cum_duration.view(b * t_x)
|
||||||
|
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||||
|
path = path.view(b, t_x, t_y)
|
||||||
|
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||||
|
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||||
|
if isinstance(parameters, torch.Tensor):
|
||||||
|
parameters = [parameters]
|
||||||
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||||
|
norm_type = float(norm_type)
|
||||||
|
if clip_value is not None:
|
||||||
|
clip_value = float(clip_value)
|
||||||
|
|
||||||
|
total_norm = 0
|
||||||
|
for p in parameters:
|
||||||
|
param_norm = p.grad.data.norm(norm_type)
|
||||||
|
total_norm += param_norm.item() ** norm_type
|
||||||
|
if clip_value is not None:
|
||||||
|
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||||
|
total_norm = total_norm ** (1.0 / norm_type)
|
||||||
|
return total_norm
|
@ -0,0 +1,978 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from .modules import ResidualCouplingLayer, Flip, WN, ResBlock1, ResBlock2, LRELU_SLOPE
|
||||||
|
from .attentions import Encoder
|
||||||
|
from .commons import init_weights, get_padding, sequence_mask, rand_slice_segments, slice_segments2
|
||||||
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
||||||
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class TextEncoder256(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
f0=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||||
|
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
if f0 is True:
|
||||||
|
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||||
|
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
|
def forward(self, phone, pitch, lengths):
|
||||||
|
if pitch is None:
|
||||||
|
x = self.emb_phone(phone)
|
||||||
|
else:
|
||||||
|
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||||
|
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||||
|
x = self.lrelu(x)
|
||||||
|
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||||
|
x = self.encoder(x * x_mask, x_mask)
|
||||||
|
stats = self.proj(x) * x_mask
|
||||||
|
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
return m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class TextEncoder768(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
f0=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.emb_phone = nn.Linear(768, hidden_channels)
|
||||||
|
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
if f0 is True:
|
||||||
|
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||||
|
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
|
def forward(self, phone, pitch, lengths):
|
||||||
|
if pitch is None:
|
||||||
|
x = self.emb_phone(phone)
|
||||||
|
else:
|
||||||
|
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||||
|
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||||
|
x = self.lrelu(x)
|
||||||
|
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||||
|
x = self.encoder(x * x_mask, x_mask)
|
||||||
|
stats = self.proj(x) * x_mask
|
||||||
|
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
return m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualCouplingBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
n_flows=4,
|
||||||
|
gin_channels=0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.n_flows = n_flows
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.flows = nn.ModuleList()
|
||||||
|
for i in range(n_flows):
|
||||||
|
self.flows.append(
|
||||||
|
ResidualCouplingLayer(
|
||||||
|
channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
mean_only=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.flows.append(Flip())
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
for flow in self.flows:
|
||||||
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
||||||
|
else:
|
||||||
|
for flow in reversed(self.flows):
|
||||||
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for i in range(self.n_flows):
|
||||||
|
self.flows[i * 2].remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class PosteriorEncoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
gin_channels=0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||||
|
self.enc = WN(
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, g=None):
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||||
|
x = self.pre(x) * x_mask
|
||||||
|
x = self.enc(x, x_mask, g=g)
|
||||||
|
stats = self.proj(x) * x_mask
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
||||||
|
return z, m, logs, x_mask
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.enc.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class Generator(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
initial_channel,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=0,
|
||||||
|
):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
|
self.num_upsamples = len(upsample_rates)
|
||||||
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||||
|
resblock = ResBlock1 if resblock == "1" else ResBlock2
|
||||||
|
|
||||||
|
self.ups = nn.ModuleList()
|
||||||
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||||
|
self.ups.append(
|
||||||
|
weight_norm(
|
||||||
|
ConvTranspose1d(
|
||||||
|
upsample_initial_channel // (2**i),
|
||||||
|
upsample_initial_channel // (2 ** (i + 1)),
|
||||||
|
k,
|
||||||
|
u,
|
||||||
|
padding=(k - u) // 2,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.resblocks = nn.ModuleList()
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||||
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||||
|
self.resblocks.append(resblock(ch, k, d))
|
||||||
|
|
||||||
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||||
|
self.ups.apply(init_weights)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||||
|
|
||||||
|
def forward(self, x, g=None):
|
||||||
|
x = self.conv_pre(x)
|
||||||
|
if g is not None:
|
||||||
|
x = x + self.cond(g)
|
||||||
|
|
||||||
|
for i in range(self.num_upsamples):
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
x = self.ups[i](x)
|
||||||
|
xs = None
|
||||||
|
for j in range(self.num_kernels):
|
||||||
|
if xs is None:
|
||||||
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
else:
|
||||||
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
x = xs / self.num_kernels
|
||||||
|
x = F.leaky_relu(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
x = torch.tanh(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.ups:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class SineGen(torch.nn.Module):
|
||||||
|
"""Definition of sine generator
|
||||||
|
SineGen(samp_rate, harmonic_num = 0,
|
||||||
|
sine_amp = 0.1, noise_std = 0.003,
|
||||||
|
voiced_threshold = 0,
|
||||||
|
flag_for_pulse=False)
|
||||||
|
samp_rate: sampling rate in Hz
|
||||||
|
harmonic_num: number of harmonic overtones (default 0)
|
||||||
|
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||||
|
noise_std: std of Gaussian noise (default 0.003)
|
||||||
|
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||||
|
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||||
|
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||||
|
segment is always sin(np.pi) or cos(0)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
samp_rate,
|
||||||
|
harmonic_num=0,
|
||||||
|
sine_amp=0.1,
|
||||||
|
noise_std=0.003,
|
||||||
|
voiced_threshold=0,
|
||||||
|
flag_for_pulse=False,
|
||||||
|
):
|
||||||
|
super(SineGen, self).__init__()
|
||||||
|
self.sine_amp = sine_amp
|
||||||
|
self.noise_std = noise_std
|
||||||
|
self.harmonic_num = harmonic_num
|
||||||
|
self.dim = self.harmonic_num + 1
|
||||||
|
self.sampling_rate = samp_rate
|
||||||
|
self.voiced_threshold = voiced_threshold
|
||||||
|
|
||||||
|
def _f02uv(self, f0):
|
||||||
|
# generate uv signal
|
||||||
|
uv = torch.ones_like(f0)
|
||||||
|
uv = uv * (f0 > self.voiced_threshold)
|
||||||
|
return uv
|
||||||
|
|
||||||
|
def forward(self, f0, upp):
|
||||||
|
"""sine_tensor, uv = forward(f0)
|
||||||
|
input F0: tensor(batchsize=1, length, dim=1)
|
||||||
|
f0 for unvoiced steps should be 0
|
||||||
|
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||||
|
output uv: tensor(batchsize=1, length, 1)
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
f0 = f0[:, None].transpose(1, 2)
|
||||||
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||||
|
# fundamental component
|
||||||
|
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||||
|
for idx in np.arange(self.harmonic_num):
|
||||||
|
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||||
|
rad_values = (f0_buf / self.sampling_rate) % 1 # %1意味着n_har的乘积无法后处理优化
|
||||||
|
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
||||||
|
rand_ini[:, 0] = 0
|
||||||
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||||
|
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||||
|
tmp_over_one *= upp
|
||||||
|
tmp_over_one = F.interpolate(
|
||||||
|
tmp_over_one.transpose(2, 1),
|
||||||
|
scale_factor=upp,
|
||||||
|
mode="linear",
|
||||||
|
align_corners=True,
|
||||||
|
).transpose(2, 1)
|
||||||
|
rad_values = F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode="nearest").transpose(2, 1)
|
||||||
|
tmp_over_one %= 1
|
||||||
|
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||||
|
cumsum_shift = torch.zeros_like(rad_values)
|
||||||
|
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||||
|
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||||
|
sine_waves = sine_waves * self.sine_amp
|
||||||
|
uv = self._f02uv(f0)
|
||||||
|
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode="nearest").transpose(2, 1)
|
||||||
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||||
|
noise = noise_amp * torch.randn_like(sine_waves)
|
||||||
|
sine_waves = sine_waves * uv + noise
|
||||||
|
return sine_waves, uv, noise
|
||||||
|
|
||||||
|
|
||||||
|
class SourceModuleHnNSF(torch.nn.Module):
|
||||||
|
"""SourceModule for hn-nsf
|
||||||
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||||
|
add_noise_std=0.003, voiced_threshod=0)
|
||||||
|
sampling_rate: sampling_rate in Hz
|
||||||
|
harmonic_num: number of harmonic above F0 (default: 0)
|
||||||
|
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||||
|
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||||
|
note that amplitude of noise in unvoiced is decided
|
||||||
|
by sine_amp
|
||||||
|
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||||
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||||
|
F0_sampled (batchsize, length, 1)
|
||||||
|
Sine_source (batchsize, length, 1)
|
||||||
|
noise_source (batchsize, length 1)
|
||||||
|
uv (batchsize, length, 1)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
sampling_rate,
|
||||||
|
harmonic_num=0,
|
||||||
|
sine_amp=0.1,
|
||||||
|
add_noise_std=0.003,
|
||||||
|
voiced_threshod=0,
|
||||||
|
is_half=True,
|
||||||
|
):
|
||||||
|
super(SourceModuleHnNSF, self).__init__()
|
||||||
|
|
||||||
|
self.sine_amp = sine_amp
|
||||||
|
self.noise_std = add_noise_std
|
||||||
|
self.is_half = is_half
|
||||||
|
# to produce sine waveforms
|
||||||
|
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod)
|
||||||
|
|
||||||
|
# to merge source harmonics into a single excitation
|
||||||
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||||
|
self.l_tanh = torch.nn.Tanh()
|
||||||
|
|
||||||
|
def forward(self, x, upp=None):
|
||||||
|
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||||
|
if self.is_half:
|
||||||
|
sine_wavs = sine_wavs.half()
|
||||||
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||||
|
return sine_merge, None, None # noise, uv
|
||||||
|
|
||||||
|
|
||||||
|
class GeneratorNSF(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
initial_channel,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels,
|
||||||
|
sr,
|
||||||
|
is_half=False,
|
||||||
|
):
|
||||||
|
super(GeneratorNSF, self).__init__()
|
||||||
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
|
self.num_upsamples = len(upsample_rates)
|
||||||
|
|
||||||
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||||
|
self.m_source = SourceModuleHnNSF(sampling_rate=sr, harmonic_num=0, is_half=is_half)
|
||||||
|
self.noise_convs = nn.ModuleList()
|
||||||
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||||
|
resblock = ResBlock1 if resblock == "1" else ResBlock2
|
||||||
|
|
||||||
|
self.ups = nn.ModuleList()
|
||||||
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||||
|
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||||
|
self.ups.append(
|
||||||
|
weight_norm(
|
||||||
|
ConvTranspose1d(
|
||||||
|
upsample_initial_channel // (2**i),
|
||||||
|
upsample_initial_channel // (2 ** (i + 1)),
|
||||||
|
k,
|
||||||
|
u,
|
||||||
|
padding=(k - u) // 2,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if i + 1 < len(upsample_rates):
|
||||||
|
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
||||||
|
self.noise_convs.append(
|
||||||
|
Conv1d(
|
||||||
|
1,
|
||||||
|
c_cur,
|
||||||
|
kernel_size=stride_f0 * 2,
|
||||||
|
stride=stride_f0,
|
||||||
|
padding=stride_f0 // 2,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||||
|
|
||||||
|
self.resblocks = nn.ModuleList()
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||||
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||||
|
self.resblocks.append(resblock(ch, k, d))
|
||||||
|
|
||||||
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||||
|
self.ups.apply(init_weights)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||||
|
|
||||||
|
self.upp = np.prod(upsample_rates)
|
||||||
|
|
||||||
|
def forward(self, x, f0, g=None):
|
||||||
|
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||||
|
har_source = har_source.transpose(1, 2)
|
||||||
|
x = self.conv_pre(x)
|
||||||
|
if g is not None:
|
||||||
|
x = x + self.cond(g)
|
||||||
|
|
||||||
|
for i in range(self.num_upsamples):
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
x = self.ups[i](x)
|
||||||
|
x_source = self.noise_convs[i](har_source)
|
||||||
|
x = x + x_source
|
||||||
|
xs = None
|
||||||
|
for j in range(self.num_kernels):
|
||||||
|
if xs is None:
|
||||||
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
else:
|
||||||
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
x = xs / self.num_kernels
|
||||||
|
x = F.leaky_relu(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
x = torch.tanh(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.ups:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
sr2sr = {
|
||||||
|
"32k": 32000,
|
||||||
|
"40k": 40000,
|
||||||
|
"48k": 48000,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||||
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
if type(sr) == type("strr"): # NOQA
|
||||||
|
sr = sr2sr[sr]
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
# self.hop_length = hop_length#
|
||||||
|
self.spk_embed_dim = spk_embed_dim
|
||||||
|
self.enc_p = TextEncoder256(
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
)
|
||||||
|
self.dec = GeneratorNSF(
|
||||||
|
inter_channels,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
sr=sr,
|
||||||
|
is_half=kwargs["is_half"],
|
||||||
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.dec.remove_weight_norm()
|
||||||
|
self.flow.remove_weight_norm()
|
||||||
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
|
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
|
# print(1,pitch.shape)#[bs,t]
|
||||||
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
|
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||||
|
pitchf = slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||||
|
# print(-2,pitchf.shape,z_slice.shape)
|
||||||
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||||
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||||
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
if type(sr) == type("strr"): # NOQA
|
||||||
|
sr = sr2sr[sr]
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
# self.hop_length = hop_length#
|
||||||
|
self.spk_embed_dim = spk_embed_dim
|
||||||
|
self.enc_p = TextEncoder768(
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
)
|
||||||
|
self.dec = GeneratorNSF(
|
||||||
|
inter_channels,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
sr=sr,
|
||||||
|
is_half=kwargs["is_half"],
|
||||||
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.dec.remove_weight_norm()
|
||||||
|
self.flow.remove_weight_norm()
|
||||||
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
|
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
|
# print(1,pitch.shape)#[bs,t]
|
||||||
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
|
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||||
|
pitchf = slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||||
|
# print(-2,pitchf.shape,z_slice.shape)
|
||||||
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||||
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||||
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr=None, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
# self.hop_length = hop_length#
|
||||||
|
self.spk_embed_dim = spk_embed_dim
|
||||||
|
self.enc_p = TextEncoder256(
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
f0=False,
|
||||||
|
)
|
||||||
|
self.dec = Generator(
|
||||||
|
inter_channels,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.dec.remove_weight_norm()
|
||||||
|
self.flow.remove_weight_norm()
|
||||||
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
|
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
|
o = self.dec(z_slice, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||||
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||||
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr=None, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
# self.hop_length = hop_length#
|
||||||
|
self.spk_embed_dim = spk_embed_dim
|
||||||
|
self.enc_p = TextEncoder768(
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
f0=False,
|
||||||
|
)
|
||||||
|
self.dec = Generator(
|
||||||
|
inter_channels,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.dec.remove_weight_norm()
|
||||||
|
self.flow.remove_weight_norm()
|
||||||
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
|
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
|
o = self.dec(z_slice, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||||
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(MultiPeriodDiscriminator, self).__init__()
|
||||||
|
periods = [2, 3, 5, 7, 11, 17]
|
||||||
|
# periods = [3, 5, 7, 11, 17, 23, 37]
|
||||||
|
|
||||||
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||||
|
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
||||||
|
self.discriminators = nn.ModuleList(discs)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = [] #
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
# for j in range(len(fmap_r)):
|
||||||
|
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(MultiPeriodDiscriminatorV2, self).__init__()
|
||||||
|
# periods = [2, 3, 5, 7, 11, 17]
|
||||||
|
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
||||||
|
|
||||||
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||||
|
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
||||||
|
self.discriminators = nn.ModuleList(discs)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = [] #
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
# for j in range(len(fmap_r)):
|
||||||
|
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorS(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(DiscriminatorS, self).__init__()
|
||||||
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||||
|
self.convs = nn.ModuleList(
|
||||||
|
[
|
||||||
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||||
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
||||||
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
||||||
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
||||||
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
||||||
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorP(torch.nn.Module):
|
||||||
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||||
|
super(DiscriminatorP, self).__init__()
|
||||||
|
self.period = period
|
||||||
|
self.use_spectral_norm = use_spectral_norm
|
||||||
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||||
|
self.convs = nn.ModuleList(
|
||||||
|
[
|
||||||
|
norm_f(
|
||||||
|
Conv2d(
|
||||||
|
1,
|
||||||
|
32,
|
||||||
|
(kernel_size, 1),
|
||||||
|
(stride, 1),
|
||||||
|
padding=(get_padding(kernel_size, 1), 0),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
norm_f(
|
||||||
|
Conv2d(
|
||||||
|
32,
|
||||||
|
128,
|
||||||
|
(kernel_size, 1),
|
||||||
|
(stride, 1),
|
||||||
|
padding=(get_padding(kernel_size, 1), 0),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
norm_f(
|
||||||
|
Conv2d(
|
||||||
|
128,
|
||||||
|
512,
|
||||||
|
(kernel_size, 1),
|
||||||
|
(stride, 1),
|
||||||
|
padding=(get_padding(kernel_size, 1), 0),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
norm_f(
|
||||||
|
Conv2d(
|
||||||
|
512,
|
||||||
|
1024,
|
||||||
|
(kernel_size, 1),
|
||||||
|
(stride, 1),
|
||||||
|
padding=(get_padding(kernel_size, 1), 0),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
norm_f(
|
||||||
|
Conv2d(
|
||||||
|
1024,
|
||||||
|
1024,
|
||||||
|
(kernel_size, 1),
|
||||||
|
1,
|
||||||
|
padding=(get_padding(kernel_size, 1), 0),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
# 1d to 2d
|
||||||
|
b, c, t = x.shape
|
||||||
|
if t % self.period != 0: # pad first
|
||||||
|
n_pad = self.period - (t % self.period)
|
||||||
|
x = F.pad(x, (0, n_pad), "reflect")
|
||||||
|
t = t + n_pad
|
||||||
|
x = x.view(b, c, t // self.period, self.period)
|
||||||
|
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
@ -0,0 +1,508 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from torch.nn import Conv1d
|
||||||
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||||
|
|
||||||
|
from .commons import init_weights, get_padding, fused_add_tanh_sigmoid_multiply
|
||||||
|
from .transforms import piecewise_rational_quadratic_transform
|
||||||
|
|
||||||
|
|
||||||
|
LRELU_SLOPE = 0.1
|
||||||
|
|
||||||
|
|
||||||
|
class LayerNorm(nn.Module):
|
||||||
|
def __init__(self, channels, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
self.gamma = nn.Parameter(torch.ones(channels))
|
||||||
|
self.beta = nn.Parameter(torch.zeros(channels))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.transpose(1, -1)
|
||||||
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||||
|
return x.transpose(1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
class ConvReluNorm(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
hidden_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
n_layers,
|
||||||
|
p_dropout,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||||
|
|
||||||
|
self.conv_layers = nn.ModuleList()
|
||||||
|
self.norm_layers = nn.ModuleList()
|
||||||
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
||||||
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||||
|
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
||||||
|
for _ in range(n_layers - 1):
|
||||||
|
self.conv_layers.append(
|
||||||
|
nn.Conv1d(
|
||||||
|
hidden_channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
padding=kernel_size // 2,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||||
|
self.proj.weight.data.zero_()
|
||||||
|
self.proj.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x_org = x
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
x = self.conv_layers[i](x * x_mask)
|
||||||
|
x = self.norm_layers[i](x)
|
||||||
|
x = self.relu_drop(x)
|
||||||
|
x = x_org + self.proj(x)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class DDSConv(nn.Module):
|
||||||
|
"""
|
||||||
|
Dialted and Depth-Separable Convolution
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.convs_sep = nn.ModuleList()
|
||||||
|
self.convs_1x1 = nn.ModuleList()
|
||||||
|
self.norms_1 = nn.ModuleList()
|
||||||
|
self.norms_2 = nn.ModuleList()
|
||||||
|
for i in range(n_layers):
|
||||||
|
dilation = kernel_size**i
|
||||||
|
padding = (kernel_size * dilation - dilation) // 2
|
||||||
|
self.convs_sep.append(
|
||||||
|
nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
groups=channels,
|
||||||
|
dilation=dilation,
|
||||||
|
padding=padding,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||||
|
self.norms_1.append(LayerNorm(channels))
|
||||||
|
self.norms_2.append(LayerNorm(channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None):
|
||||||
|
if g is not None:
|
||||||
|
x = x + g
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.convs_sep[i](x * x_mask)
|
||||||
|
y = self.norms_1[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.convs_1x1[i](y)
|
||||||
|
y = self.norms_2[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = x + y
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class WN(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
gin_channels=0,
|
||||||
|
p_dropout=0,
|
||||||
|
):
|
||||||
|
super(WN, self).__init__()
|
||||||
|
assert kernel_size % 2 == 1
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = (kernel_size,)
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.in_layers = torch.nn.ModuleList()
|
||||||
|
self.res_skip_layers = torch.nn.ModuleList()
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
|
||||||
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
||||||
|
|
||||||
|
for i in range(n_layers):
|
||||||
|
dilation = dilation_rate**i
|
||||||
|
padding = int((kernel_size * dilation - dilation) / 2)
|
||||||
|
in_layer = torch.nn.Conv1d(
|
||||||
|
hidden_channels,
|
||||||
|
2 * hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation=dilation,
|
||||||
|
padding=padding,
|
||||||
|
)
|
||||||
|
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
||||||
|
self.in_layers.append(in_layer)
|
||||||
|
|
||||||
|
# last one is not necessary
|
||||||
|
if i < n_layers - 1:
|
||||||
|
res_skip_channels = 2 * hidden_channels
|
||||||
|
else:
|
||||||
|
res_skip_channels = hidden_channels
|
||||||
|
|
||||||
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||||
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
||||||
|
self.res_skip_layers.append(res_skip_layer)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, **kwargs):
|
||||||
|
output = torch.zeros_like(x)
|
||||||
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||||
|
|
||||||
|
if g is not None:
|
||||||
|
g = self.cond_layer(g)
|
||||||
|
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
x_in = self.in_layers[i](x)
|
||||||
|
if g is not None:
|
||||||
|
cond_offset = i * 2 * self.hidden_channels
|
||||||
|
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||||
|
else:
|
||||||
|
g_l = torch.zeros_like(x_in)
|
||||||
|
|
||||||
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
||||||
|
acts = self.drop(acts)
|
||||||
|
|
||||||
|
res_skip_acts = self.res_skip_layers[i](acts)
|
||||||
|
if i < self.n_layers - 1:
|
||||||
|
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||||
|
x = (x + res_acts) * x_mask
|
||||||
|
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||||
|
else:
|
||||||
|
output = output + res_skip_acts
|
||||||
|
return output * x_mask
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
if self.gin_channels != 0:
|
||||||
|
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||||
|
for l in self.in_layers:
|
||||||
|
torch.nn.utils.remove_weight_norm(l)
|
||||||
|
for l in self.res_skip_layers:
|
||||||
|
torch.nn.utils.remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock1(torch.nn.Module):
|
||||||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||||
|
super(ResBlock1, self).__init__()
|
||||||
|
self.convs1 = nn.ModuleList(
|
||||||
|
[
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1]),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation[2],
|
||||||
|
padding=get_padding(kernel_size, dilation[2]),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.convs1.apply(init_weights)
|
||||||
|
|
||||||
|
self.convs2 = nn.ModuleList(
|
||||||
|
[
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.convs2.apply(init_weights)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask=None):
|
||||||
|
for c1, c2 in zip(self.convs1, self.convs2):
|
||||||
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c1(xt)
|
||||||
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c2(xt)
|
||||||
|
x = xt + x
|
||||||
|
if x_mask is not None:
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs1:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.convs2:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock2(torch.nn.Module):
|
||||||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||||
|
super(ResBlock2, self).__init__()
|
||||||
|
self.convs = nn.ModuleList(
|
||||||
|
[
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
weight_norm(
|
||||||
|
Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1]),
|
||||||
|
)
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.convs.apply(init_weights)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask=None):
|
||||||
|
for c in self.convs:
|
||||||
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c(xt)
|
||||||
|
x = xt + x
|
||||||
|
if x_mask is not None:
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class Log(nn.Module):
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||||
|
logdet = torch.sum(-y, [1, 2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = torch.exp(x) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Flip(nn.Module):
|
||||||
|
def forward(self, x, *args, reverse=False, **kwargs):
|
||||||
|
x = torch.flip(x, [1])
|
||||||
|
if not reverse:
|
||||||
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseAffine(nn.Module):
|
||||||
|
def __init__(self, channels):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||||
|
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = self.m + torch.exp(self.logs) * x
|
||||||
|
y = y * x_mask
|
||||||
|
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualCouplingLayer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
p_dropout=0,
|
||||||
|
gin_channels=0,
|
||||||
|
mean_only=False,
|
||||||
|
):
|
||||||
|
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.half_channels = channels // 2
|
||||||
|
self.mean_only = mean_only
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||||
|
self.enc = WN(
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
p_dropout=p_dropout,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||||
|
self.post.weight.data.zero_()
|
||||||
|
self.post.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||||
|
h = self.pre(x0) * x_mask
|
||||||
|
h = self.enc(h, x_mask, g=g)
|
||||||
|
stats = self.post(h) * x_mask
|
||||||
|
if not self.mean_only:
|
||||||
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||||
|
else:
|
||||||
|
m = stats
|
||||||
|
logs = torch.zeros_like(m)
|
||||||
|
|
||||||
|
if not reverse:
|
||||||
|
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||||
|
x = torch.cat([x0, x1], 1)
|
||||||
|
logdet = torch.sum(logs, [1, 2])
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||||
|
x = torch.cat([x0, x1], 1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.enc.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class ConvFlow(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
filter_channels,
|
||||||
|
kernel_size,
|
||||||
|
n_layers,
|
||||||
|
num_bins=10,
|
||||||
|
tail_bound=5.0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.num_bins = num_bins
|
||||||
|
self.tail_bound = tail_bound
|
||||||
|
self.half_channels = in_channels // 2
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||||
|
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||||
|
self.proj.weight.data.zero_()
|
||||||
|
self.proj.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||||
|
h = self.pre(x0)
|
||||||
|
h = self.convs(h, x_mask, g=g)
|
||||||
|
h = self.proj(h) * x_mask
|
||||||
|
|
||||||
|
b, c, t = x0.shape
|
||||||
|
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||||
|
|
||||||
|
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||||
|
|
||||||
|
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||||
|
x1,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=reverse,
|
||||||
|
tails="linear",
|
||||||
|
tail_bound=self.tail_bound,
|
||||||
|
)
|
||||||
|
|
||||||
|
x = torch.cat([x0, x1], 1) * x_mask
|
||||||
|
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||||
|
if not reverse:
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
return x
|
@ -0,0 +1,179 @@
|
|||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||||
|
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||||
|
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||||
|
|
||||||
|
|
||||||
|
def piecewise_rational_quadratic_transform(
|
||||||
|
inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
tails=None,
|
||||||
|
tail_bound=1.0,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||||
|
):
|
||||||
|
if tails is None:
|
||||||
|
spline_fn = rational_quadratic_spline
|
||||||
|
spline_kwargs = {}
|
||||||
|
else:
|
||||||
|
spline_fn = unconstrained_rational_quadratic_spline
|
||||||
|
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||||
|
|
||||||
|
outputs, logabsdet = spline_fn(inputs=inputs, unnormalized_widths=unnormalized_widths, unnormalized_heights=unnormalized_heights, unnormalized_derivatives=unnormalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs)
|
||||||
|
return outputs, logabsdet
|
||||||
|
|
||||||
|
|
||||||
|
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||||
|
bin_locations[..., -1] += eps
|
||||||
|
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||||
|
|
||||||
|
|
||||||
|
def unconstrained_rational_quadratic_spline(
|
||||||
|
inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
tails="linear",
|
||||||
|
tail_bound=1.0,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||||
|
):
|
||||||
|
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||||
|
outside_interval_mask = ~inside_interval_mask
|
||||||
|
|
||||||
|
outputs = torch.zeros_like(inputs)
|
||||||
|
logabsdet = torch.zeros_like(inputs)
|
||||||
|
|
||||||
|
if tails == "linear":
|
||||||
|
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||||
|
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||||
|
unnormalized_derivatives[..., 0] = constant
|
||||||
|
unnormalized_derivatives[..., -1] = constant
|
||||||
|
|
||||||
|
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||||
|
logabsdet[outside_interval_mask] = 0
|
||||||
|
else:
|
||||||
|
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||||
|
|
||||||
|
(
|
||||||
|
outputs[inside_interval_mask],
|
||||||
|
logabsdet[inside_interval_mask],
|
||||||
|
) = rational_quadratic_spline(
|
||||||
|
inputs=inputs[inside_interval_mask],
|
||||||
|
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||||
|
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||||
|
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||||
|
inverse=inverse,
|
||||||
|
left=-tail_bound,
|
||||||
|
right=tail_bound,
|
||||||
|
bottom=-tail_bound,
|
||||||
|
top=tail_bound,
|
||||||
|
min_bin_width=min_bin_width,
|
||||||
|
min_bin_height=min_bin_height,
|
||||||
|
min_derivative=min_derivative,
|
||||||
|
)
|
||||||
|
|
||||||
|
return outputs, logabsdet
|
||||||
|
|
||||||
|
|
||||||
|
def rational_quadratic_spline(
|
||||||
|
inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
left=0.0,
|
||||||
|
right=1.0,
|
||||||
|
bottom=0.0,
|
||||||
|
top=1.0,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||||
|
):
|
||||||
|
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||||
|
raise ValueError("Input to a transform is not within its domain")
|
||||||
|
|
||||||
|
num_bins = unnormalized_widths.shape[-1]
|
||||||
|
|
||||||
|
if min_bin_width * num_bins > 1.0:
|
||||||
|
raise ValueError("Minimal bin width too large for the number of bins")
|
||||||
|
if min_bin_height * num_bins > 1.0:
|
||||||
|
raise ValueError("Minimal bin height too large for the number of bins")
|
||||||
|
|
||||||
|
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||||
|
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||||
|
cumwidths = torch.cumsum(widths, dim=-1)
|
||||||
|
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||||
|
cumwidths = (right - left) * cumwidths + left
|
||||||
|
cumwidths[..., 0] = left
|
||||||
|
cumwidths[..., -1] = right
|
||||||
|
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||||
|
|
||||||
|
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||||
|
|
||||||
|
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||||
|
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||||
|
cumheights = torch.cumsum(heights, dim=-1)
|
||||||
|
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||||
|
cumheights = (top - bottom) * cumheights + bottom
|
||||||
|
cumheights[..., 0] = bottom
|
||||||
|
cumheights[..., -1] = top
|
||||||
|
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||||
|
|
||||||
|
if inverse:
|
||||||
|
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||||
|
else:
|
||||||
|
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||||
|
|
||||||
|
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||||
|
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||||
|
delta = heights / widths
|
||||||
|
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||||
|
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
if inverse:
|
||||||
|
a = (inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives)
|
||||||
|
b = input_heights * input_derivatives - (inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||||
|
c = -input_delta * (inputs - input_cumheights)
|
||||||
|
|
||||||
|
discriminant = b.pow(2) - 4 * a * c
|
||||||
|
assert (discriminant >= 0).all()
|
||||||
|
|
||||||
|
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||||
|
outputs = root * input_bin_widths + input_cumwidths
|
||||||
|
|
||||||
|
theta_one_minus_theta = root * (1 - root)
|
||||||
|
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
|
||||||
|
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).pow(2))
|
||||||
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||||
|
|
||||||
|
return outputs, -logabsdet
|
||||||
|
else:
|
||||||
|
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||||
|
theta_one_minus_theta = theta * (1 - theta)
|
||||||
|
|
||||||
|
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
|
||||||
|
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
|
||||||
|
outputs = input_cumheights + numerator / denominator
|
||||||
|
|
||||||
|
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
|
||||||
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||||
|
|
||||||
|
return outputs, logabsdet
|
@ -0,0 +1 @@
|
|||||||
|
modules in this folder from https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI at 66d470361ad07009a442e9e95a0169ba1a139459
|
@ -1,21 +0,0 @@
|
|||||||
# from dataclasses import dataclass, field
|
|
||||||
# from typing import List
|
|
||||||
# from dataclasses_json import dataclass_json
|
|
||||||
|
|
||||||
|
|
||||||
# @dataclass_json
|
|
||||||
# @dataclass
|
|
||||||
# class MergeFile:
|
|
||||||
# filename: str
|
|
||||||
# strength: int
|
|
||||||
|
|
||||||
|
|
||||||
# @dataclass_json
|
|
||||||
# @dataclass
|
|
||||||
# class MergeModelRequest:
|
|
||||||
# command: str = ""
|
|
||||||
# slot: int = -1
|
|
||||||
# defaultTune: int = 0
|
|
||||||
# defaultIndexRatio: int = 1
|
|
||||||
# defaultProtect: float = 0.5
|
|
||||||
# files: List[MergeFile] = field(default_factory=lambda: [])
|
|
@ -1,277 +0,0 @@
|
|||||||
import math
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from infer_pack.models import ( # type:ignore
|
|
||||||
GeneratorNSF,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
Generator,
|
|
||||||
)
|
|
||||||
from infer_pack import commons, attentions # type:ignore
|
|
||||||
|
|
||||||
|
|
||||||
class TextEncoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
out_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
emb_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
f0=True,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.out_channels = out_channels
|
|
||||||
self.hidden_channels = hidden_channels
|
|
||||||
self.filter_channels = filter_channels
|
|
||||||
self.emb_channels = emb_channels
|
|
||||||
self.n_heads = n_heads
|
|
||||||
self.n_layers = n_layers
|
|
||||||
self.kernel_size = kernel_size
|
|
||||||
self.p_dropout = p_dropout
|
|
||||||
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
|
|
||||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
|
||||||
if f0 is True:
|
|
||||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
|
||||||
self.encoder = attentions.Encoder(
|
|
||||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
|
||||||
)
|
|
||||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
||||||
|
|
||||||
def forward(self, phone, pitch, lengths):
|
|
||||||
if pitch is None:
|
|
||||||
x = self.emb_phone(phone)
|
|
||||||
else:
|
|
||||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
|
||||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
|
||||||
x = self.lrelu(x)
|
|
||||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
|
||||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
|
||||||
x.dtype
|
|
||||||
)
|
|
||||||
x = self.encoder(x * x_mask, x_mask)
|
|
||||||
stats = self.proj(x) * x_mask
|
|
||||||
|
|
||||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
||||||
return m, logs, x_mask
|
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsid(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.spec_channels = spec_channels
|
|
||||||
self.inter_channels = inter_channels
|
|
||||||
self.hidden_channels = hidden_channels
|
|
||||||
self.filter_channels = filter_channels
|
|
||||||
self.n_heads = n_heads
|
|
||||||
self.n_layers = n_layers
|
|
||||||
self.kernel_size = kernel_size
|
|
||||||
self.p_dropout = p_dropout
|
|
||||||
self.resblock = resblock
|
|
||||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
||||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
||||||
self.upsample_rates = upsample_rates
|
|
||||||
self.upsample_initial_channel = upsample_initial_channel
|
|
||||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
||||||
self.segment_size = segment_size
|
|
||||||
self.gin_channels = gin_channels
|
|
||||||
self.emb_channels = emb_channels
|
|
||||||
# self.hop_length = hop_length#
|
|
||||||
self.spk_embed_dim = spk_embed_dim
|
|
||||||
self.enc_p = TextEncoder(
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
emb_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
)
|
|
||||||
self.dec = GeneratorNSF(
|
|
||||||
inter_channels,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
gin_channels=gin_channels,
|
|
||||||
sr=sr,
|
|
||||||
is_half=kwargs["is_half"],
|
|
||||||
)
|
|
||||||
self.enc_q = PosteriorEncoder(
|
|
||||||
spec_channels,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
5,
|
|
||||||
1,
|
|
||||||
16,
|
|
||||||
gin_channels=gin_channels,
|
|
||||||
)
|
|
||||||
self.flow = ResidualCouplingBlock(
|
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
|
||||||
self.dec.remove_weight_norm()
|
|
||||||
self.flow.remove_weight_norm()
|
|
||||||
self.enc_q.remove_weight_norm()
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
|
||||||
): # 这里ds是id,[bs,1]
|
|
||||||
# print(1,pitch.shape)#[bs,t]
|
|
||||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
|
||||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
|
||||||
z_p = self.flow(z, y_mask, g=g)
|
|
||||||
z_slice, ids_slice = commons.rand_slice_segments(
|
|
||||||
z, y_lengths, self.segment_size
|
|
||||||
)
|
|
||||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
|
||||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
|
||||||
# print(-2,pitchf.shape,z_slice.shape)
|
|
||||||
o = self.dec(z_slice, pitchf, g=g)
|
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsidNono(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr=None,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.spec_channels = spec_channels
|
|
||||||
self.inter_channels = inter_channels
|
|
||||||
self.hidden_channels = hidden_channels
|
|
||||||
self.filter_channels = filter_channels
|
|
||||||
self.n_heads = n_heads
|
|
||||||
self.n_layers = n_layers
|
|
||||||
self.kernel_size = kernel_size
|
|
||||||
self.p_dropout = p_dropout
|
|
||||||
self.resblock = resblock
|
|
||||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
||||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
||||||
self.upsample_rates = upsample_rates
|
|
||||||
self.upsample_initial_channel = upsample_initial_channel
|
|
||||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
||||||
self.segment_size = segment_size
|
|
||||||
self.gin_channels = gin_channels
|
|
||||||
self.emb_channels = emb_channels
|
|
||||||
# self.hop_length = hop_length#
|
|
||||||
self.spk_embed_dim = spk_embed_dim
|
|
||||||
self.enc_p = TextEncoder(
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
emb_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
f0=False,
|
|
||||||
)
|
|
||||||
self.dec = Generator(
|
|
||||||
inter_channels,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
gin_channels=gin_channels,
|
|
||||||
)
|
|
||||||
self.enc_q = PosteriorEncoder(
|
|
||||||
spec_channels,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
5,
|
|
||||||
1,
|
|
||||||
16,
|
|
||||||
gin_channels=gin_channels,
|
|
||||||
)
|
|
||||||
self.flow = ResidualCouplingBlock(
|
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
|
||||||
self.dec.remove_weight_norm()
|
|
||||||
self.flow.remove_weight_norm()
|
|
||||||
self.enc_q.remove_weight_norm()
|
|
||||||
|
|
||||||
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
|
||||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
|
||||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
|
||||||
z_p = self.flow(z, y_mask, g=g)
|
|
||||||
z_slice, ids_slice = commons.rand_slice_segments(
|
|
||||||
z, y_lengths, self.segment_size
|
|
||||||
)
|
|
||||||
o = self.dec(z_slice, g=g)
|
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
|
@ -1,36 +1,10 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import TextEncoder256, PosteriorEncoder, ResidualCouplingBlock, GeneratorNSF # type: ignore
|
||||||
TextEncoder256,
|
|
||||||
GeneratorNSF,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
)
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
sr,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -80,9 +54,7 @@ class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
@ -1,36 +1,10 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import TextEncoder256, PosteriorEncoder, ResidualCouplingBlock, Generator # type: ignore
|
||||||
TextEncoder256,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
Generator,
|
|
||||||
)
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs256NSFsid_nono_ONNX(nn.Module):
|
class SynthesizerTrnMs256NSFsid_nono_ONNX(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr=None, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
sr=None,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -79,9 +53,7 @@ class SynthesizerTrnMs256NSFsid_nono_ONNX(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
@ -1,36 +1,10 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import TextEncoder768, PosteriorEncoder, ResidualCouplingBlock, GeneratorNSF # type: ignore
|
||||||
TextEncoder768,
|
|
||||||
GeneratorNSF,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
)
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs768NSFsid_ONNX(nn.Module):
|
class SynthesizerTrnMs768NSFsid_ONNX(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
sr,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -80,9 +54,7 @@ class SynthesizerTrnMs768NSFsid_ONNX(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
@ -1,10 +1,5 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import TextEncoder768, PosteriorEncoder, ResidualCouplingBlock, Generator # type: ignore
|
||||||
TextEncoder768,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
Generator,
|
|
||||||
)
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,37 +1,11 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import PosteriorEncoder, ResidualCouplingBlock, Generator # type: ignore
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
Generator,
|
|
||||||
)
|
|
||||||
from voice_changer.RVC.models import TextEncoder
|
|
||||||
import torch
|
import torch
|
||||||
|
from ..inferencer.models import TextEncoder # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsidNono_webui_ONNX(nn.Module):
|
class SynthesizerTrnMsNSFsidNono_webui_ONNX(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr=None, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr=None,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -82,9 +56,7 @@ class SynthesizerTrnMsNSFsidNono_webui_ONNX(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
@ -1,37 +1,11 @@
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from infer_pack.models import ( # type:ignore
|
from ..inferencer.rvc_models.infer_pack.models import PosteriorEncoder, ResidualCouplingBlock, GeneratorNSF # type: ignore
|
||||||
GeneratorNSF,
|
|
||||||
PosteriorEncoder,
|
|
||||||
ResidualCouplingBlock,
|
|
||||||
)
|
|
||||||
from voice_changer.RVC.models import TextEncoder
|
|
||||||
import torch
|
import torch
|
||||||
|
from ..inferencer.models import TextEncoder # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMsNSFsid_webui_ONNX(nn.Module):
|
class SynthesizerTrnMsNSFsid_webui_ONNX(nn.Module):
|
||||||
def __init__(
|
def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, emb_channels, sr, **kwargs):
|
||||||
self,
|
|
||||||
spec_channels,
|
|
||||||
segment_size,
|
|
||||||
inter_channels,
|
|
||||||
hidden_channels,
|
|
||||||
filter_channels,
|
|
||||||
n_heads,
|
|
||||||
n_layers,
|
|
||||||
kernel_size,
|
|
||||||
p_dropout,
|
|
||||||
resblock,
|
|
||||||
resblock_kernel_sizes,
|
|
||||||
resblock_dilation_sizes,
|
|
||||||
upsample_rates,
|
|
||||||
upsample_initial_channel,
|
|
||||||
upsample_kernel_sizes,
|
|
||||||
spk_embed_dim,
|
|
||||||
gin_channels,
|
|
||||||
emb_channels,
|
|
||||||
sr,
|
|
||||||
**kwargs
|
|
||||||
):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.spec_channels = spec_channels
|
self.spec_channels = spec_channels
|
||||||
self.inter_channels = inter_channels
|
self.inter_channels = inter_channels
|
||||||
@ -83,9 +57,7 @@ class SynthesizerTrnMsNSFsid_webui_ONNX(nn.Module):
|
|||||||
16,
|
16,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
)
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels)
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
|
||||||
)
|
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user