import pyworld import numpy as np from const import PitchExtractorType import torch from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor class HarvestPitchExtractor(PitchExtractor): def __init__(self): super().__init__() self.pitchExtractorType: PitchExtractorType = "harvest" self.f0_min = 50 self.f0_max = 1100 self.sapmle_rate = 16000 self.uv_interp = True def extract(self, audio: torch.Tensor, pitchf, f0_up_key, sr, window, silence_front=0): audio = audio.detach().cpu().numpy() start_frame = int(silence_front * self.sapmle_rate / window) real_silence_front = start_frame * window / self.sapmle_rate audio = audio[int(np.round(real_silence_front * self.sapmle_rate)):] f0, _ = pyworld.harvest( audio.astype('double'), 16000, f0_floor=50, f0_ceil=1100, frame_period=(1000 * window / self.sapmle_rate)) pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]] f0 = pitchf if self.uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < 50] = 50 f0 = f0 * 2 ** (float(f0_up_key) / 12) return f0